scholarly journals Total Flavonoids of Crocus sativus Petals Release tert-Butyl Hydroperoxide-Induced Oxidative Stress in BRL-3A Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hong Ye ◽  
Juan Luo ◽  
Dongmei Hu ◽  
Shuting Yang ◽  
Aolai Zhang ◽  
...  

Antioxidant and hepatoprotective activities in vitro of saffron petals were examined in this study for better utilizing saffron (Crocus sativus L.) biowaste. Using the DPPH and ABTS radical scavenging method, we compared the antioxidant activity and the content of total flavonoid extracts from petals (TFESP), stamens (TFESS), and both saffron petals and stamens (TFEMS). The results showed that the antioxidant capacity and the flavonoid content of TFESP were higher than those of TFESS and TFEMS. Then, the hepatoprotective activity of TFESP was determined, and the silymarin was used as a positive control. The main components of TFESP were analysed by ultrahigh performance liquid chromatography (UPLC) photodiode array (PDA)/mass spectrometry (MS) and nuclear magnetic resonance (NMR). The result showed that (1) TFESP could release oxidative liver injury induced by tert-butyl hydroperoxide (t-BHP). (2) TFESP could reduce the accumulation of reactive oxygen species (ROS); enhance the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH); and then improve the total antioxidant capacity (T-AOC) in BRL-3A cells. (3) TFESP could enhance the expression of B-cell lymphoma-2 (BCL-2) and decrease the expression of caspase-3 and caspase-9; increase the expression of Kelch-like ECH-associated protein-1 (Keap-1), nuclear factor, erythroid 2-related factor 2 (Nrf2), superoxide dismutase, and heme oxygenase 1 (HO-1); and downregulate inducible nitric oxide synthase (INOS), interleukin-6 (IL-6), and nuclear factor kappa B-9 (NF-κB-9). (4) The main hepatoprotective component of TFESP was identified as kaempferol-3-o-sophoroside. The mechanism may be that kaempferol-3-o-sophoroside can protect t-BHP-induced cell injury by regulating the expression of antioxidant, antiapoptotic, and anti-inflammatory genes. Thus, saffron petals are a potential hepatoprotective resource worthy of development.

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 374 ◽  
Author(s):  
Sujin Lim ◽  
Misung Kwon ◽  
Eun-Ji Joung ◽  
Taisun Shin ◽  
Chul-Woong Oh ◽  
...  

Sargassum species have been reported to be a source of phytochemicals, with a wide range of biological activities. In this study, we evaluated the hepatoprotective effect of a meroterpenoid-rich fraction of the ethanolic extract from Sargassum serratifolium (MES) against tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells. Treatment with MES recovered the cell viability from the t-BHP-induced oxidative damage in a dose-dependent manner. It suppressed the reactive oxygen species production, lipid peroxidation, and glutathione depletion in the t-BHP-treated HepG2 cells. The activity of the antioxidants induced by t-BHP, including superoxide dismutase (SOD) and catalase, was reduced by the MES treatment. Moreover, it increased the nuclear translocation of nuclear factor erythroid 2-related factor 2, leading to the enhanced activity of glutathione S transferase, and the increased production of heme oxygenase-1 and NAD(P)H:quinine oxidoreductase 1 in t-BHP-treated HepG2 cells. These results demonstrate that the antioxidant activity of MES substituted the activity of the SOD and catalase, and induced the production of detoxifying enzymes, indicating that MES might be used as a hepatoprotectant against t-BHP-induced oxidative stress.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 346 ◽  
Author(s):  
Aladaileh ◽  
Abukhalil ◽  
Saghir ◽  
Hanieh ◽  
Alfwuaires ◽  
...  

Cyclophosphamide (CP) is a widely used chemotherapeutic agent; however, its clinical application is limited because of its multi-organ toxicity. Galangin (Gal) is a bioactive flavonoid with promising biological activities. This study investigated the hepatoprotective effect of Gal in CP-induced rats. Rats received Gal (15, 30 and 60 mg/kg/day) for 15 days followed by a single dose of CP at day 16. Cyclophosphamide triggered liver injury characterized by elevated serum transaminases, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and histopathological manifestations. Increased hepatic reactive oxygen species, malondialdehyde, nitric oxide, and oxidative DNA damage along with declined glutathione and antioxidant enzymes were demonstrated in CP-administered rats. CP provoked hepatic nuclear factor-kappaB (NF-κB) phosphorylation and increased mRNA abundance of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) both expression and serum levels. Gal prevented CP-induced liver injury, boosted antioxidants and suppressed oxidative stress, DNA damage, NF-κB phosphorylation and pro-inflammatory mediators. Gal diminished Bax and caspase-3, and increased B-cell lymphoma-2 (Bcl-2) in liver of CP-administered rats. In addition, Gal increased peroxisome proliferator-activated receptor gamma (PPARγ) expression and activated hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) signaling showed by the increase in Nrf2, NAD(P)H: quinone acceptor oxidoreductase-1 (NQO-1) and heme oxygenase 1 (HO-1) in CP-administered rats. These findings suggest that Gal prevents CP hepatotoxicity through activation of Nrf2/HO-1 signaling and attenuation of oxidative damage, inflammation and cell death. Therefore, Gal might represent a promising adjuvant therapy to prevent hepatotoxicity in patients on CP treatment.


2016 ◽  
Vol 241 (14) ◽  
pp. 1568-1576 ◽  
Author(s):  
Lidong Wang ◽  
Xinxin Ci ◽  
Hongming Lv ◽  
Xiaosong Wang ◽  
F Xiaofeng Qin ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2907 ◽  
Author(s):  
Yih-Fung Chen ◽  
Sheng-Nan Wu ◽  
Jia-Mao Gao ◽  
Zhi-Yao Liao ◽  
Yu-Ting Tseng ◽  
...  

Chalcones belong to a class of biologically active polyphenolic natural products. As a result of their simple chemical nature, they are easily synthesized and show a variety of promising biological activities. 2-Hydroxy-4′-methoxychalcone (AN07) is a synthetic chalcone derivate with potential anti-atherosclerosis effects. In this study, we demonstrated the novel antioxidant, anti-inflammatory, and neuroprotective effects of AN07. In RAW 264.7 macrophages, AN07 attenuated lipopolysaccharide (LPS)-induced elevations in reactive oxygen species (ROS) level and oxidative stress via down-regulating gp91phox expression and stimulating the antioxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, which were accompanied by increased glutathione (GSH) levels. Additionally, AN07 attenuated LPS-induced inflammatory factors, including NO, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated inhibitor of nuclear factor kappa B-alpha (p-IκBα) in RAW 264.7 macrophages. However, the effects of AN07 on promoting nuclear Nrf2 levels and decreasing COX-2 expressions were significantly abrogated by the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662. In human dopaminergic SH-SY5Y cells treated with or without methylglyoxal (MG), a toxic endogenous by-product of glycolysis, AN07 up-regulated neurotrophic signals including insulin-like growth factor 1 receptor (IGF-1R), p-Akt, p-GSK3β, glucagon-like peptide 1 receptor (GLP-1R), and brain-derived neurotrophic factor (BDNF). AN07 attenuated MG-induced apoptosis by up-regulating the B-cell lymphoma 2 (Bcl-2) protein and down-regulating the cytosolic expression of cytochrome c. AN07 also attenuated MG-induced neurite damage via down-regulating the Rho-associated protein kinase 2 (ROCK2)/phosphorylated LIM kinase 1 (p-LIMK1) pathway. Moreover, AN07 ameliorated the MG-induced down-regulation of neuroprotective Parkinsonism-associated proteins parkin, pink1, and DJ-1. These findings suggest that AN07 possesses the potentials to be an anti-inflammatory, antioxidant, and neuroprotective agent


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 370 ◽  
Author(s):  
Miao Yu ◽  
Zhi-Yuan Wei ◽  
Zhou-Heng Xu ◽  
Jia-Qi Pan ◽  
Jian-Huan Chen

Deoxynivalenol (DON) is a kind of natural pollutant belonging to the trichothecenes family. The aim of this study is to use diverse assays to evaluate oxidative damage as well as translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), and to investigate their mechanisms in DON-induced toxicities on a placenta and embryo. Pregnant C57BL/6 mice were randomly assigned to three groups with different doses of DON: 0, 1.0, 2.5 mg/(kg·day). In gestation day (GD) 12.5 d and 18.5 d, DON induced an elevated resorption rate of the embryos as well as structural and functional damage of the placenta. In the placenta, altered levels of the antioxidant enzymes malondialdehyde, superoxide dismutase and glutathione indicated remarkable oxidative stress. Furthermore, an elevated level of heme oxygenase-1 (HO-1) and the translocation of Nrf2 from nucleus to cytoplasm indicated Nrf2/HO-1 pathway activation in DON-L group (1.0 mg/(kg·day)). It is noteworthy that the results in this experiment in GD 12.5 d were similar to those in GD 18.5 d. In conclusion, DON-induced placental oxidative damage and Nrf2 translocation were similar in GD 12.5 d and GD 18.5 d. Oxidative stress is one of the most important molecular mechanisms for embryotoxicity induced by DON, and Nrf2 translocation may play a substantial role against it.


Sign in / Sign up

Export Citation Format

Share Document