scholarly journals Simulation Study of Rear-End Crash Evaluation considering Driver Experience Heterogeneity in the Framework of Three-Phase Traffic Theory

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haifei Yang ◽  
Yao Wu ◽  
Huihui Xiao ◽  
Yi Zhao

Driving safety is considered to have a strong relationship with traffic flow characteristics. However, very few studies have addressed the safety impacts in the three-phase traffic theory that has been demonstrated to be an advancement in explaining the empirical features of traffic flow. Another important issue affecting safety is driver experience heterogeneity, especially in developing countries experiencing a dramatic growth in the number of novice drivers. Thus, the primary objective of the current study is to develop a microsimulation environment for evaluating safety performance considering the presence of novice drivers in the framework of three-phase theory. First, a car-following model is developed by incorporating human physiological factors into the classical Intelligent Driver Model (IDM). Moreover, a surrogate safety measure based on the integration concept is modified to evaluate rear-end crashes in terms of probability and severity simultaneously. Based on a vehicle-mounted experiment, the field data of car-following behavior are collected by dividing the subjects into a novice group and an experienced group. These data are used to calibrate the proposed car-following model to explain driver experience heterogeneity. The results indicate that our simulation environment is capable of reproducing the three-phase theory, and the changes in the modified surrogate safety measure are highly correlated with traffic phases. We also discover that the presence of novice drivers leads to different safety performance outcomes across various traffic phases. The effect of driver experience heterogeneity is found to increase the probability of the rear-end crashes as well as the corresponding severity. The results of this study are expected to provide a scientific understanding of the mechanisms of crash occurrences and to provide application suggestions for improving traffic safety performance.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bo Yang ◽  
Yao Wu ◽  
Weihua Zhang

The objective of this study is to analyse the relationship between secondary crash risk and traffic flow states and explore the contributing factors of secondary crashes in different traffic flow states. Crash data and traffic data were collected on the I-880 freeway in California from 2006 to 2011. The traffic flow states are categorised by three-phase traffic theory. The Bayesian conditional logit model has been established to analyse the statistical relationship between the secondary crash probability and various traffic flow states. The results showed that free flow (F) state has the best safety performance of secondary crash and synchronized flow (S) state has the worst safety performance of secondary crashes. The traditional logistic regression model has been used to analyse the contributing factors of secondary crashes in different traffic flow states. The results indicated that the contributing factors in different traffic flow states are significantly different.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Guangyao Li ◽  
Keyu Xu ◽  
Shubin Li

In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model. Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow. Finally, numerical methods are conducted to examine the performance of the proposed model with regard to two aspects: compared with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to enhance traffic flow stability.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850241 ◽  
Author(s):  
Dong Chen ◽  
Dihua Sun ◽  
Min Zhao ◽  
Yuchu He ◽  
Hui Liu

In traffic systems, cooperative driving has attracted the researchers’ attention. A lot of works attempt to understand the effects of cooperative driving behavior and/or time delays on traffic flow dynamics for specific traffic flow models. This paper is a new attempt to investigate analyses of linear stability and weak nonlinearity for the general car-following model with consideration of cooperation and time delays. We derive linear stability condition and study how the combinations of cooperation and time delays affect the stability of traffic flow. Burgers’ equation and Korteweg de Vries’ (KdV) equation for car-following model considering cooperation and time delays are derived. Their solitary wave solutions and constraint conditions are concluded. We investigate the property of cooperative optimal velocity (OV) model which estimates the combinations of cooperation and time delays about the evolution of traffic waves using both analytic and numerical methods. The results indicate that delays and cooperation are model-dependent, and cooperative behavior could inhibit the stabilization of traffic flow. Moreover, delays of sensing relative motion are easy to trigger the traffic waves; delays of sensing host vehicle are beneficial to relieve the instability effect to a certain extent.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shihao Li ◽  
Ting Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

In this paper, an extended car-following model with consideration of the driver’s desire for smooth driving and the self-stabilizing control in historical velocity data is constructed. Moreover, for better reflecting the reality, we also integrate the velocity uncertainty into the new model to analyze the internal characteristics of traffic flow in situation where the historical velocity data are uncertain. Then, the model’s linear stability condition is inferred by utilizing linear stability analysis, and the modified Korteweg-de Vries (mKdV) equation is also obtained to depict the evolution properties of traffic congestion. According to the theoretical analysis, we observe that the degree of traffic congestion is alleviated when the control signal is considered, and the historical time gap and the velocity uncertainty also play a role in affecting the stability of traffic flow. Finally, some numerical simulation experiments are implemented and the experiments’ results demonstrate that the control signals including the self-stabilizing control, the driver’s desire for smooth driving, the historical time gap, and the velocity uncertainty are of avail to improve the traffic jam, which are consistent with the theoretical analytical results.


2012 ◽  
Vol 178-181 ◽  
pp. 2717-2720
Author(s):  
Man Xian Tuo

An extended traffic flow model is proposed by introducing the multiple information of preceding cars. The linear stability condition of the extended model is obtained, which shows that the stability of traffic flow is improved by considering the interaction of preceding cars to the following car. Numerical simulation shows that the traffic jams are suppressed efficiently by taking into account the multiple information of the preceding cars.


2014 ◽  
Vol 28 (24) ◽  
pp. 1450191 ◽  
Author(s):  
Geng Zhang ◽  
Di-Hua Sun ◽  
Hui Liu ◽  
Min Zhao

In recent years, the influence of drivers' behaviors on traffic flow has attracted considerable attention according to Transportation Cyber Physical Systems. In this paper, an extended car-following model is presented by considering drivers' timid or aggressive characteristics. The impact of drivers' timid or aggressive characteristics on the stability of traffic flow has been analyzed through linear stability theory and nonlinear reductive perturbation method. Numerical simulation shows that the propagating behavior of traffic density waves near the critical point can be described by the kink–antikink soliton of the mKdV equation. The good agreement between the numerical simulation and the analytical results shows that drivers' characteristics play an important role in traffic jamming transition.


Sign in / Sign up

Export Citation Format

Share Document