scholarly journals Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anil Johny ◽  
K. N. Madhusoodanan

Diagnosis of different breast cancer stages using histopathology whole slide images (WSI) is the gold standard in determining the grade of tissue metastasis. Computer-aided diagnosis (CAD) assists medical experts as a second opinion tool in early detection to prevent further proliferation. The field of pathology has advanced so rapidly that it is possible to obtain high-quality images from glass slides. Patches from the region of interest in histopathology images are extracted and trained using artificial neural network models. The trained model primarily analyzes and predicts the histology images for the benign or malignant class to which it belongs. Classification of medical images focuses on the training of models with layers of abstraction to distinguish between these two classes with less false-positive rates. The learning rate is the crucial hyperparameter used during the training of deep convolutional neural networks (DCNN) to improve model accuracy. This work emphasizes the relevance of the dynamic learning rate than the fixed learning rate during the training of networks. The dynamic learning rate varies with preset conditions between the lower and upper boundaries and repeats at different iterations. The performance of the model thus improves and attains comparatively high accuracy with fewer iterations.

2020 ◽  
Vol 36 (12) ◽  
pp. 3693-3702 ◽  
Author(s):  
Dandan Zheng ◽  
Guansong Pang ◽  
Bo Liu ◽  
Lihong Chen ◽  
Jian Yang

Abstract Motivation Identification of virulence factors (VFs) is critical to the elucidation of bacterial pathogenesis and prevention of related infectious diseases. Current computational methods for VF prediction focus on binary classification or involve only several class(es) of VFs with sufficient samples. However, thousands of VF classes are present in real-world scenarios, and many of them only have a very limited number of samples available. Results We first construct a large VF dataset, covering 3446 VF classes with 160 495 sequences, and then propose deep convolutional neural network models for VF classification. We show that (i) for common VF classes with sufficient samples, our models can achieve state-of-the-art performance with an overall accuracy of 0.9831 and an F1-score of 0.9803; (ii) for uncommon VF classes with limited samples, our models can learn transferable features from auxiliary data and achieve good performance with accuracy ranging from 0.9277 to 0.9512 and F1-score ranging from 0.9168 to 0.9446 when combined with different predefined features, outperforming traditional classifiers by 1–13% in accuracy and by 1–16% in F1-score. Availability and implementation All of our datasets are made publicly available at http://www.mgc.ac.cn/VFNet/, and the source code of our models is publicly available at https://github.com/zhengdd0422/VFNet. Supplementary information Supplementary data are available at Bioinformatics online.


2006 ◽  
Vol 30 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Basak Guven ◽  
Alan Howard

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6918
Author(s):  
Chidubem Iddianozie ◽  
Gavin McArdle

The effectiveness of a machine learning model is impacted by the data representation used. Consequently, it is crucial to investigate robust representations for efficient machine learning methods. In this paper, we explore the link between data representations and model performance for inference tasks on spatial networks. We argue that representations which explicitly encode the relations between spatial entities would improve model performance. Specifically, we consider homogeneous and heterogeneous representations of spatial networks. We recognise that the expressive nature of the heterogeneous representation may benefit spatial networks and could improve model performance on certain tasks. Thus, we carry out an empirical study using Graph Neural Network models for two inference tasks on spatial networks. Our results demonstrate that heterogeneous representations improves model performance for down-stream inference tasks on spatial networks.


Sign in / Sign up

Export Citation Format

Share Document