scholarly journals Effect of Superficial Scratch Damage on Tension Properties of Carbon/Epoxy Plain Weave Laminates

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Miaomiao Duan ◽  
Zhufeng Yue ◽  
Qianguang Song

The effect of scratch damage on the tension properties of carbon fiber plain weave laminates has been studied in detail using digital image correlation (DIC) and acoustic emission (AE). A range of scratch lengths was machined onto different laminates. The bearing capacity of the laminates was then compared with that of unaltered samples. The strain field distributions near the scratches were measured and analyzed as a function of scratch length with DIC. Initiation and propagation of damage were monitored during the tensile tests using AE. Failure sites and morphologies were observed and analyzed. The results show that superficial scratches have little effect on the strength of plain weave laminates when the scratch length is less than 80% of the specimen width. Scratches affect the distribution of strain near the scratch but not far away from the scratch or at the back face of the sample. Not all samples broke from the scratch site but instead broke from the free edge of the sample or close to the gripping region.

Author(s):  
Ziqian Li ◽  
Zishun Liu

Soft matter with hyperelastic behavior may be harnessed for novel applications. However, it is not achievable if the mechanical behaviors of soft matter are not well understood. At present, various traditional extensometers have been used to measure the engineering strain of materials to determine the mechanical properties. The basic assumption of extensometers is that the strain is assumed to be uniform over the gage length. However, this assumption does not hold good in case of experimental specimens having significant nonuniform strain distribution, for example, tensile tests on notched specimens or materials that undergo localized deformations. Hence, it is imperative to adopt a new method which enables us to capture the actual strain field on the surface of a material. Digital image correlation (DIC) technique is an adequate approach that has been widely used in many fields of science and engineering. In this paper, we have presented a mapping algorithm for hyperelastic materials, translating the strain field provided by DIC to the stress field based on continuum mechanics. It overcomes the limitation of extensometers and captures the real stress field for such materials. This method will not only improve the measuring accuracy of stress and strain fields in current experiments, but also greatly promote the study of the localized characteristic for nonlinear and inhomogeneous materials.


2017 ◽  
Vol 48 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Mehdi Ghazimoradi ◽  
Valter Carvelli ◽  
Maria Chiara Marchesi ◽  
Roberto Frassine

In this paper, the mechanical properties of different tetraxial fabrics are investigated. Fabrics were produced using an innovative loom capable of weaving four threads at the same time with complete discretion of yarn type and count. The experimental investigation deals with in-plane and out-of-plane mechanical testing of tetraxial fabrics, as well as yarns made of four different materials (polyethylene terephthalate, glass, aramid, and basalt). The digital image correlation technique was used to measure the in-plane strain field for both uniaxial and biaxial tensile tests. The extensive experimental campaign allowed for a complete mechanical characterization of this novel fabric architecture including interlacement of different yarns.


Author(s):  
A. Bauer ◽  
M. Vollmer ◽  
T. Niendorf

AbstractIn situ tensile tests employing digital image correlation were conducted to study the martensitic transformation of oligocrystalline Fe–Mn–Al–Ni shape memory alloys in depth. The influence of different grain orientations, i.e., near-〈001〉 and near-〈101〉, as well as the influence of different grain boundary misorientations are in focus of the present work. The results reveal that the reversibility of the martensite strongly depends on the type of martensitic evolving, i.e., twinned or detwinned. Furthermore, it is shown that grain boundaries lead to stress concentrations and, thus, to formation of unfavored martensite variants. Moreover, some martensite plates seem to penetrate the grain boundaries resulting in a high degree of irreversibility in this area. However, after a stable microstructural configuration is established in direct vicinity of the grain boundary, the transformation begins inside the neighboring grains eventually leading to a sequential transformation of all grains involved.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1094
Author(s):  
M. A. Lakhdari ◽  
F. Krajcarz ◽  
J. D. Mithieux ◽  
H. P. Van Landeghem ◽  
M. Veron

The impact of microstructure evolution on mechanical properties in superduplex stainless steel UNS S32750 (EN 1.4410) was investigated. To this end, different thermomechanical treatments were carried out in order to obtain clearly distinct duplex microstructures. Optical microscopy and scanning electron microscopy, together with texture measurements, were used to characterize the morphology and the preferred orientations of ferrite and austenite in all microstructures. Additionally, the mechanical properties were assessed by tensile tests with digital image correlation. Phase morphology was not found to significantly affect the mechanical properties and neither were phase volume fractions within 13% of the 50/50 ratio. Austenite texture was the same combined Goss/Brass texture regardless of thermomechanical processing, while ferrite texture was mainly described by α-fiber orientations. Ferrite texture and average phase spacing were found to have a notable effect on mechanical properties. One of the original microstructures of superduplex stainless steel obtained here shows a strength improvement by the order of 120 MPa over the industrial material.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Leszek Czechowski

The paper deals with an examination of the behaviour of glued Ti-Al column under compression at elevated temperature. The tests of compressed columns with initial load were performed at different temperatures to obtain their characteristics and the load-carrying capacity. The deformations of columns during tests were registered by employing non-contact Digital Image Correlation Aramis® System. The numerical computations based on finite element method by using two different discrete models were carried out to validate the empirical results. To solve the problems, true stress-logarithmic strain curves of one-directional tensile tests dependent on temperature both for considered metals and glue were implemented to software. Numerical estimations based on Green–Lagrange equations for large deflections and strains were conducted. The paper reveals the influence of temperature on the behaviour of compressed C-profile Ti-Al columns. It was verified how the load-carrying capacity of glued bi-metal column decreases with an increase in the temperature increment. The achieved maximum loads at temperature 200 °C dropped by 2.5 times related to maximum loads at ambient temperature.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


Author(s):  
Christopher D. Newton ◽  
Jonathan P. Jones ◽  
Adam L. Chamberlain ◽  
Martin R. Bache

The complex structural architecture and inherent processing artefacts within ceramic matrix composites combine to induce inhomogeneous deformation and damage prior to ultimate failure. Bulk measurements of strain via extensometry or even localised strain gauging will fail to characterise such inhomogeneity when performing conventional mechanical testing on laboratory scaled coupons. The current research project has, therefore, applied digital image correlation (DIC) techniques to the room temperature axial assessment of a SiCf/SiC composite under static and ratchetted loading. As processed SiCf/SiC panels were subjected to detailed X-ray computed tomography (XCT) inspection prior to specimen extraction and subsequent mechanical testing. In situ DIC strain measurements were taken throughout the period of room temperature monotonic and ratchet style tensile tests. Contemporary acoustic emission (AE) signals were also recorded to indicate significant damage events and the onset of ultimate failure. Data from these separate monitoring techniques were correlated to indicate the sensitivity or otherwise to pre-existing artefacts within the as received CMC panels.


Sign in / Sign up

Export Citation Format

Share Document