scholarly journals Quantum Clone Elite Genetic Algorithm-Based Evaluation Mechanism for Maximizing Network Efficiency in Soil Moisture Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jing Xiao ◽  
Yang Liu ◽  
Jie Zhou

In agriculture, soil moisture wireless sensor networks (SMWSNs) are used to monitor the growth of crops for obtaining higher yields. The purpose of this paper is to improve the network efficiency of SMWSNs. Therefore, we propose a novel network efficiency evaluation mechanism which is suitable for soil moisture sensors and design a sensor target allocation model (STAM) for the actual agricultural situation. After that, a quantum clone elite genetic algorithm (QCEGA) is proposed; then, QCEGA is applied to optimize the STAM for obtaining optimal results. QCEGA uses the parallel mechanism of quantum computing to encode individuals, integrates the quantum revolving gate in quantum computing and the concept of cloning in biology to avoid the algorithm from falling into local optimum, and applies the elite strategy to speed up the convergence of the algorithm. Subsequently, the proposed algorithm is compared with simulated annealing (SA) and particle swarm optimization (PSO). Under the novel network efficiency evaluation mechanism, the simulation results demonstrate that the network efficiency based on QCEGA is higher than that of SA and PSO; what is more, QCEGA has better convergence performance. In comparison with traditional wireless sensor network efficiency evaluation approaches, our methods are more in line with the development of modern agriculture and can effectively improve the efficiency of SMWSNs, thus ensuring that crops can have a better growth condition.

Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 43
Author(s):  
Muhammad K. Shahzad ◽  
S. M. Riazul Islam ◽  
Mahmud Hossain ◽  
Mohammad Abdullah-Al-Wadud ◽  
Atif Alamri ◽  
...  

In recent years, the deployment of wireless sensor networks has become an imperative requisite for revolutionary areas such as environment monitoring and smart cities. The en-route filtering schemes primarily focus on energy saving by filtering false report injection attacks while network lifetime is usually ignored. These schemes also suffer from fixed path routing and fixed response to these attacks. Furthermore, the hot-spot is considered as one of the most crucial challenges in extending network lifetime. In this paper, we have proposed a genetic algorithm based fuzzy optimized re-clustering scheme to overcome the said limitations and thereby minimize the effect of the hot-spot problem. The fuzzy logic is applied to capture the underlying network conditions. In re-clustering, an important question is when to perform next clustering. To determine the time instant of the next re-clustering (i.e., number of nodes depleted—energy drained to zero), associated fuzzy membership functions are optimized using genetic algorithm. Simulation experiments validate the proposed scheme. It shows network lifetime extension of up to 3.64 fold while preserving detection capacity and energy-efficiency.


2021 ◽  
Author(s):  
Ramin Danehchin

Abstract Data collection on Wireless Sensor Networks (WSNs) is a significant challenge to satisfy the requirements of various applications. Providing an energy-efficient routing technique is the primary step in data collection over WSNs. The existing data collection techniques in the WSNs field struggle with the imbalance load distribution and the short lifetime of the network. This paper proposes a novel mechanism to select cluster-heads, cluster the wireless sensor nodes, and determine the optimal route from source nodes to the sink. We employ the genetic algorithm to solve the routing problem considering the hop-count of the cluster-heads to the sink, the number of each cluster member, residual energy of cluster-heads, and the number of cluster-heads connected to the sink as the fitness criteria. Our proposed mechanism uses a greedy approach to calculate the hop-count of each cluster-head to the sink for integrating the clustering and routing process on WSNs. The simulation results demonstrate that our proposed mechanism improves the energy consumption, the number of live nodes, and the lifetime of the network compared to other data collection approaches on WSNs.


Sign in / Sign up

Export Citation Format

Share Document