scholarly journals Optimum Energy Flow Management of a Grid-Tied Photovoltaic-Wind-Battery System considering Cost, Reliability, and CO2 Emission

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Meryeme Azaroual ◽  
Mohammed Ouassaid ◽  
Mohamed Maaroufi

The main goal of this paper is to explore the performance of a residential grid-tied hybrid (GTH) system which relies on economic and environmental aspects. A photovoltaic- (PV-) wind turbine- (WT-) battery storage system with maximizing self-consumption and time-of-use (ToU) pricing is conducted to examine the system efficiency. In so doing, technical optimization criteria with taking into consideration renewable energy benefits including feed-in-tariff (FIT) and greenhouse gas emission (GHG) reduction are analyzed. As the battery has a substantial effect on the operational cost of the system, the energy management strategy (EMS) will incorporate the daily operating cost of the battery and the effect of the degradation. The model can give the opportunity to the network to sell or purchase energy from the system. The simulation results demonstrate the effectiveness of the proposed approach in which the new objective function achieves the maximum cost-saving (99.81%) and income (5.16 $/day) compared to other existing strategies as well as the lowest GHG emission. Furthermore, the battery enhances the best daily self-consumption and load cover ratio. Then, as the model is nonlinear, a comparison with other existing algorithms is performed to select the feasible, robust, and reliable model for the residential application. A hybrid algorithm (HGAFMINCON) is developed to demonstrate the superiority of the algorithm over FMINCON and GA shown in terms of cost savings and income.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1442 ◽  
Author(s):  
Samia Abid ◽  
Turki Ali Alghamdi ◽  
Abdul Haseeb ◽  
Zahid Wadud ◽  
Abrar Ahmed ◽  
...  

In the last couple of decades, numerous energy management strategies have been devised to mitigate the effects of greenhouse gas emission, hence introducing the concept of microgrids. In a microgrid, distributed energy generators are used. Microgrid enables a point which ameliorates in exchanging power with the main grid during different times of day. Based on the system constraints, in this work, we aim to efficiently minimize the operating cost of the microgrid and shave the power consumption peaks. For this purpose, we introduce an improved binary bat (iBBat) algorithm which helps to schedule the load demand of smart homes and energy generation from distributed generator of microgrid to the load demand and supply. The proposed energy management algorithm is applied to both grid-connected and islanded modes of the microgrid. The constraints imposed on the algorithm ensure that the load of electricity consumer does not escalate during peak hours. The simulation results are compared with BBat and binary flower pollination algorithm, which validate that the iBBat reflects substantial reduction in operating cost of microgrid. Moreover, results also show a phenomenal reduction in the peak-to-average ratio of load demand from main the main grid.


Solar Energy ◽  
2002 ◽  
Author(s):  
Gregor P. Henze

A simplified ice storage system model was developed in which the icemaking mode is reflected by a higher power consumption per unit cooling than in chilled-water mode. The performance of four control strategies for ice storage systems is evaluated. The four control strategies investigated are chiller-priority and constant-proportion as conventional, instantaneous controls, while storage-priority and optimal control represent sophisticated controls employing load forecasting. Six parameters were investigated with respect to their influence on the ice storage system performance: Storage losses, utility rate structures, rate periods, penalty for icemaking, storage capacity, and the impact of load forecasting. Optimal control was determined to provide maximal operating cost savings. The storage-priority control yields operating costs only slightly higher than those of optimal control. Chiller-priority control realized savings that were typically on the order of 50% of what is theoretically possible (optimal control). Constant-proportion control proved to be a simple control strategy yielding higher savings than chiller-priority, yet lower than storage-priority control.


2003 ◽  
Vol 125 (1) ◽  
pp. 2-12 ◽  
Author(s):  
Gregor P. Henze

A simplified ice storage system model was developed in which the icemaking mode is reflected by a higher power consumption per unit cooling than in chilled-water mode. The performance of four control strategies for ice storage systems is evaluated. The four control strategies investigated are chiller-priority and constant-proportion as conventional, instantaneous controls, while storage-priority and optimal control represent sophisticated controls employing load forecasting. Six parameters were investigated with respect to their influence on the ice storage system performance: Storage losses, utility rate structures, rate periods, penalty for icemaking, storage capacity, and the impact of load forecasting. Optimal control was determined to provide maximal operating cost savings. The storage-priority control yields operating costs only slightly higher than those of optimal control. Chiller-priority control realized savings that were typically on the order of 50% of what is theoretically possible (optimal control). Constant-proportion control proved to be a simple control strategy yielding higher savings than chiller-priority, yet lower than storage-priority control.


Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


2012 ◽  
Vol 268-270 ◽  
pp. 933-936
Author(s):  
Xiao Dong Wang ◽  
Jin Hua Zhu ◽  
Ying Ming Liu ◽  
Hong Fang Xie

With the increase in wind power generation and network capacity, Wind farm power fluctuations on the grid greatly. In order to improve the operational stability of wind farm grid, at its outlet to increase the energy storage system for the new environmentally friendly vanadium redox flow battery (VRB) to effectively regulate the grid power. According to the VRB equivalent mathematical model using a bidirectional DC/AC converter as VRB storage system power regulator, the corresponding charge discharge control and energy management strategy are designed , and grid-connected wind farm system with VRB energy storage unit are modeled and simulated. Simulation results show that the fluctuations in wind speed Circumstances, the VRB energy storage system can quickly and effectively smooth the fluctuations of the active power of the wind farm output, and can provide reactive support to the grid, effectively improve the operating performance of wind farm.


Sign in / Sign up

Export Citation Format

Share Document