scholarly journals Electroacupuncture at Bilateral ST36 Acupoints: Inducing the Hypoglycemic Effect through Enhancing Insulin Signal Proteins in a Streptozotocin-Induced Rat Model during Isoflurane Anesthesia

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kee-Ming Man ◽  
Yu-Chen Lee ◽  
Ying-I. Chen ◽  
Yung Hsiang Chen ◽  
Shih Liang Chang ◽  
...  

In rats with 2-deoxy-2-(3-(methyl-3-nitrosoureido)-d-glucopyranose streptozotocin- (STZ-) induced insulin-dependent diabetes (IDDM), continuous 15 Hz electrical stimulation at bilateral ST36 acupoints for 30 and 60 minutes has been shown to prevent hyperglycemia. We hypothesized that the mechanism of action in STZ-induced IDDM rats is that electrical stimulation at bilateral ST36 acupoints is effective in improving insulin receptor substrate type 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expressions associated with counteracting both plasma glucose and free fatty acid (FFA) levels during isoflurane anesthesia. In this study, twenty-six healthy male Wistar rats, weighing 250–350 g and aged 8–10 weeks were tested. Rats in the experimental electroacupuncture (EA) group (n = 13) received 15 Hz electrical stimulation at bilateral ST 36 acupoints for 30 and 60 minutes. Rats in the control group (n = 13) were handled but not subjected to the stimulation treatment. In both IDDM and normal Wistar rats, we observed a negative change in plasma glucose levels when rats were given the EA treatment, but a positive change in plasma glucose without EA treatment relative to baseline. Within the IDDM group, a negative change in FFA levels was observed when rats were given the EA treatment, while a positive change in the FFA level was shown without the EA treatment. In the expressed protein signals, we found a significant elevation in both GLUT4 and IRS-1 proteins in the IDDM group treated by EA. Moreover, we found a significant mean difference between GLUT4 and IRS-1 protein expression levels relative to β-actin. Our findings suggested that EA at bilateral ST36 acupoints could serve as an effective strategy for lowering plasma glucose by decreasing free fatty acid levels and improving the expression of IRS-1 and GLUT4 proteins in a STZ-IDDM rat model during isoflurane anesthesia.

1983 ◽  
Vol 55 (3) ◽  
pp. 830-833 ◽  
Author(s):  
G. L. Dohm ◽  
E. B. Tapscott ◽  
H. A. Barakat ◽  
G. J. Kasperek

We recently observed that a 24-h fasted group of rats could run longer than an ad libitum fed control group before becoming exhausted. Because of the demonstrated importance of glycogen levels and free fatty acid availability during endurance exercise, we have investigated several parameters of carbohydrate and lipid metabolism in exercised and nonexercised rats that were either fed ad libitum or fasted for 24 h. A 24-h fast depleted liver glycogen, lowered plasma glucose concentration, decreased muscle glycogen levels, and increased free fatty acid and beta-hydroxybutyrate concentrations in plasma. During exercise the fasted group had lower plasma glucose concentration, higher plasma concentration of free fatty acids and beta-hydroxybutyrate, and a lower muscle glycogen depletion rate than did the ad libitum fed group. Since fasted rats were able to continue running even when plasma glucose had dropped to levels lower than those of fed-exhausted rats, it seems unlikely that blood glucose level, per se, is a factor in causing exhaustion. These results suggest that fasting increases fatty acid utilization during exercise and the resulting “glycogen sparing” effect may result in increased endurance.


Diabetes ◽  
1988 ◽  
Vol 37 (8) ◽  
pp. 1020-1024 ◽  
Author(s):  
G. M. Reaven ◽  
C. Hollenbeck ◽  
C. Y. Jeng ◽  
M. S. Wu ◽  
Y. D. Chen

2018 ◽  
Vol 38 (1) ◽  
pp. 76-82
Author(s):  
Fabián Meza-Cuenca ◽  
J. M. L. Medina-Contreras ◽  
Patrick Mailloux-Salinas ◽  
Luis A. Bautista-Hernández ◽  
Beatríz Buentello-Volante ◽  
...  

1961 ◽  
Vol 201 (3) ◽  
pp. 535-539 ◽  
Author(s):  
D. T. Armstrong ◽  
R. Steele ◽  
N. Altszuler ◽  
A. Dunn ◽  
J. S. Bishop ◽  
...  

Plasma free fatty acid (FFA) concentration falls when an infusion of glucagon-free insulin is initiated in the normal unanesthetized dog in the postabsorptive state. Using C14 palmitate it was shown that the lowered FFA concentration is caused by decreased FFA production. This decreased FFA production accompanies increased glucose uptake by the tissues as demonstrated using C14 glucose. During slow insulin infusion, when plasma glucose concentration remains above 75 mg%, FFA production and concentration remain low. However, during more rapid insulin infusion, when plasma glucose concentration falls below 50 mg%, the initially lowered FFA production rebounds and FFA production and concentration exceed the preinsulin level. Glucose uptake always remains elevated during insulin infusion. Dibenzyline or guanethidine pretreatment blocks the rebound in FFA production. Thus decreased FFA production, due presumably to decreased FFA release by adipose tissue because of insulin-stimulated glucose uptake, can be overpowered by a sympatho-adrenal response to hypoglycemia during a continued infusion of insulin and a resulting continued increased glucose uptake.


1981 ◽  
Vol 18 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Dario Giugliano ◽  
Teresa Cerciello ◽  
Nicola Passariello ◽  
Michele Varricchio ◽  
Roberto Torella ◽  
...  

1973 ◽  
Vol 134 (2) ◽  
pp. 499-506 ◽  
Author(s):  
Oliver E. Owen ◽  
Helene Markus ◽  
Stuart Sarshik ◽  
Maria Mozzoli

1. Concentrations of ketone bodies, free fatty acids and chloride in fed, 24–120h-starved and alloxan-diabetic rats were determined in plasma and striated muscle. Plasma glucose concentrations were also measured in these groups of animals. 2. Intracellular metabolite concentrations were calculated by using chloride as an endogenous marker of extracellular space. 3. The mean intracellular ketone-body concentrations (±s.e.m.) were 0.17±0.02, 0.76±0.11 and 2.82±0.50μmol/ml of water in fed, 48h-starved and alloxan-diabetic rats, respectively. Mean (intracellular water concentration)/(plasma water concentration) ratios were 0.47, 0.30 and 0.32 in fed, 48h-starved and alloxan-diabetic rats respectively. The relationship between ketone-body concentrations in the plasma and intracellular compartments appeared to follow an asymptotic pattern. 4. Only intracellular 3-hydroxybutyrate concentrations rose during starvation whereas concentrations of both 3-hydroxybutyrate and acetoacetate were elevated in the alloxan-diabetic state. 5. During starvation plasma glucose concentrations were lowest at 48h, and increased with further starvation. 6. There was no significant difference in the muscle intracellular free fatty acid concentrations of fed, starved and alloxan-diabetic rats. Mean free fatty acid intramuscular concentrations (±s.e.m.) were 0.81±0.08, 0.98±0.21 and 0.91±0.10μmol/ml in fed, 48h-starved and alloxan-diabetic states. 7. The intracellular ketosis of starvation and the stability of free fatty acid intracellular concentrations suggests that neither muscle membrane permeability nor concentrations of free fatty acids per se are major factors in limiting ketone-body oxidation in these states.


1981 ◽  
Vol 61 (4) ◽  
pp. 919-924 ◽  
Author(s):  
A. D. GRAHAM ◽  
G. D. PHILLIPS

The effects of chronic cold exposure, fasting, or both on the plasma metabolite responses to jugular infusions of adrenaline were studied in eight five-mo-old wether lambs. Following maintenance at 20–22 °C or −4 to 10 °C for 2–3 wk the sheep received adrenaline infusions (0.15 μg∙kg−1∙min−1) for 75 min prior to and following a 72-h fast. Plasma samples collected at intervals of 10–15 min before and during adrenaline infusion were analyzed for glucose, lactate and total free fatty acids. Chronic cold exposure had no effect on the pre-infusion plasma glucose, lactate or free fatty acid concentrations. Fasting decreased plasma glucose and lactate and increased plasma free fatty acid concentrations. The plasma glucose response to adrenaline was greater (P < 0.01) in cold- than warm-exposed sheep and fasting depressed this response to a greater extent in the cold-exposed sheep. The plasma lactate response to adrenaline was not influenced by temperature treatment or fasting. Both groups of fasted sheep showed a large increase in plasma free fatty acids during adrenaline infusion but when fed the response was minimal.


1986 ◽  
Vol 63 (2) ◽  
pp. 481-484 ◽  
Author(s):  
A. GOLAY ◽  
A.L.M. SWISLOCKI ◽  
Y.D.I. CHEN ◽  
J.B. JASPAN ◽  
G.M. REAVEN

Sign in / Sign up

Export Citation Format

Share Document