scholarly journals Breakthrough Pressure Prediction Based on Neural Network Model

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuren Hao ◽  
Jixiang Cao ◽  
Hua Zhang ◽  
Yulian Liu ◽  
Haian Liang ◽  
...  

The increasing carbon dioxide content is identified as the main cause of global warming. Capturing carbon dioxide in the atmosphere and transporting it to deep salt layer for storage have been proven and practiced in many aspects, which considered to be an effective way to reduce the content of carbon dioxide in the atmosphere. The sealing property of cap rocks is one of the key factors to determine whether CO2 can be effectively stored for a long time. In view of the disadvantages of tedious and time-consuming laboratory test methods for breakthrough pressure of cap rock, this paper explores the relationship between breakthrough pressure and other parameters such as porosity, permeability, density, specific surface area, maximum throat radius, and total organic carbon. The results show that the rock breakthrough pressure is closely related to the maximum throat radius and permeability determined by the mercury injection method, followed by the porosity and specific surface area, and less related to the density, depth, and TOC content of the rock itself. Then, with the selected parameters, a neural network model is established to predict the breakthrough pressure of cap rock, which can achieve good prediction results.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fei Wang ◽  
Toshihiro Kuzuya ◽  
Shinji Hirai ◽  
Jihua Li ◽  
Te Li

The decomposition of dolomite into CaO and MgO was performed at 1073 K in vacuum and at 1273 K in an Ar atmosphere. The dolomite calcined in vacuum was found to have a higher specific surface area and a higher micropore volume when compared to the dolomite calcined in the Ar atmosphere. These pyrolysis products of dolomite were reacted with CO2at 673 K for 21.6 ks. On the absorption of CO2, the formation of CaCO3was observed. The degree of absorption of the dolomite calcined in vacuum was determined to be above 50%, which was higher than the degree of absorption of the dolomite calcined in the Ar atmosphere. The CO2absorption and release procedures were repeated three times for the dolomite calcined in vacuum. The specific surface area and micropore volume of calcined dolomite decreased with successive repetitions of the CO2absorption and release cycles leading to a decrease in the degree of absorption of CO2.


2013 ◽  
Vol 423-426 ◽  
pp. 554-559 ◽  
Author(s):  
Xin Zhi ◽  
Zhan Cheng Guo

This research through the study on the properties of silicon dust, put forward in combination with lime kiln tail gas recycling carbon dioxide, preparation of precipitated silica (nanoWhite Carbon Black) of high value utilization technology, and studied and summarized process of the dissolution and precipitation by carbon dioxide. The silica fume is in amorphous form, and it has some special powder properties such as ultra fine grain size and high specific surface area and high chemical activity, these provide favorable foundation for low energy consumption process of recycling the powder. In the dissolution stage, the optimization reaction time is about 40 minutes, this time to complete the process of the reaction more than 90%. And the reaction is the fastest in the first 20 minutes, complete response 75% of the reaction. In the stage of carbonization, with increase of the concentration of the precursor, the particle diameter becomes larger, but the specific surface area of the powder will reduce, the porosity and the surface activity of it will reduce corresponding.


2019 ◽  
Vol 21 (1) ◽  
pp. 59-66
Author(s):  
Alicja Szymańska ◽  
Amelia Skoczek ◽  
Jacek Przepiórski

Abstract Activated carbons (ACs) prepared from common nettle (Urtica Dioica L.) were studied in terms of carbon dioxide adsorption. ACs were prepared by KOH chemical activation in a nitrogen atmosphere at temperatures (ranging from 500 to 850°C). The pore structure and the surface characterization of the ACs were specified based on adsorption-desorption isotherms of nitrogen measured at –196°C and carbon dioxide at 0°C. The specific surface area was calculated according to the BET equation. The pore volume was estimated using the DFT method. The highest values of the specific surface area (SSA) showed activated carbons produced at higher carbonization temperatures. All samples revealed presence of micropores and mesopores with a diameter range of 0.3–10 nm. The highest value of the CO2 adsorption, 4.22 mmol/g, was found for the material activated at 700°C.


2020 ◽  
Vol 4 (3) ◽  
pp. 30-42
Author(s):  
Fehime Cakicioglu-Ozkan

CO2 adsorption on K exchanged NaX zeolites, and metal organic frameworks (MOFs), namely Cu-BTC and MIL53 (Al) was studied at 5 °C and 25 °C.  Exchange via ultrasonic and traditional methods, was conducted at 50 °C and 70 °C. The maximum replacement of Na+ ion with K+ ion in the extra framework of zeolite was increased from 76% to 83% with increasing temperature from 50 °C to 70 °C in the ultrasonic method which is more effective than traditional one. Compared with the zeolites, the MOF adsorbents used in this work have higher Langmuir specific surface area values namely 1278, 1473 and about 1000 m2/g for MIL 53, Cu-BTC and zeolite adsorbents respectively. The resulting CO2 isotherms can be well represented by the Toth equation. Comparison of the isosteric heat of adsorption at zero loading shows that CO2 was adsorbed more weakly on MOFs than zeolites.


Sign in / Sign up

Export Citation Format

Share Document