scholarly journals Analysis of Seizure EEG in Kindled Epileptic Rats

2007 ◽  
Vol 8 (4) ◽  
pp. 225-234 ◽  
Author(s):  
A. K. Sen ◽  
M. J. Kubek ◽  
H. E. Shannon

Using wavelet analysis we have detected the presence of chirps in seizure EEG signals recorded from kindled epileptic rats. Seizures were induced by electrical stimulation of the amygdala and the EEG signals recorded from the amygdala were analyzed using a continuous wavelet transform. A time–frequency representation of the wavelet power spectrum revealed that during seizure the EEG signal is characterized by a chirp-like waveform whose frequency changes with time from the onset of seizure to its completion. Similar chirp-like time–frequency profiles have been observed in newborn and adult patients undergoing epileptic seizures. The global wavelet spectrum depicting the variation of power with frequency showed two dominant frequencies with the largest amounts of power during seizure. Our results indicate that a kindling paradigm in rats can be used as an animal model of human temporal lobe epilepsy to detect seizures by identifying chirp-like time–frequency variations in the EEG signal.

2018 ◽  
Vol 28 (07) ◽  
pp. 1850003 ◽  
Author(s):  
Yang Li ◽  
Weigang Cui ◽  
Meilin Luo ◽  
Ke Li ◽  
Lina Wang

The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed I. Sharaf ◽  
Mohamed Abu El-Soud ◽  
Ibrahim M. El-Henawy

Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach to recognize and classify the epileptic seizure and seizure-free EEG signals automatically by an intelligent computer-aided method. Moreover, the prediction of the preictal phase of the epilepsy is proposed to assist the neurophysiologist in the clinic. The proposed method presents two perspectives for the EEG signal processing to detect and classify the seizures and seizure-free signals. The first perspectives consider the EEG signal as a nonlinear time series. A tunable Q-wavelet is applied to decompose the signal into smaller segments called subbands. Then a chaotic, statistical, and power spectrum features sets are extracted from each subband. The second perspectives process the EEG signal as an image; hence the gray-level co-occurrence matrix is determined from the image to obtain the textures of contrast, correlation, energy, and homogeneity. Due to a large number of features obtained, a feature selection algorithm based on firefly optimization was applied. The firefly optimization reduces the original set of features and generates a reduced compact set. A random forest classifier is trained for the classification and prediction of the seizures and seizure-free signals. Afterward, a dataset from the University of Bonn, Germany, is used for benchmarking and evaluation. The proposed approach provided a significant result compared with other recent work regarding accuracy, recall, specificity, F-measure, and Matthew’s correlation coefficient.


2020 ◽  
Vol 65 (4) ◽  
pp. 379-391 ◽  
Author(s):  
Hasan Polat ◽  
Mehmet Ufuk Aluçlu ◽  
Mehmet Siraç Özerdem

AbstractThe general uncertainty of epilepsy and its unpredictable seizures often affect badly the quality of life of people exposed to this disease. There are patients who can be considered fortunate in terms of prediction of any seizures. These are patients with epileptic auras. In this study, it was aimed to evaluate pre-seizure warning symptoms of the electroencephalography (EEG) signals by a convolutional neural network (CNN) inspired by the epileptic auras defined in the medical field. In this context, one-dimensional EEG signals were transformed into a spectrogram display form in the frequency-time domain by applying a short-time Fourier transform (STFT). Systemic changes in pre-epileptic seizure have been described by applying the CNN approach to the EEG signals represented in the image form, and the subjective EEG-Aura process has been tried to be determined for each patient. Considering all patients included in the evaluation, it was determined that the 1-min interval covering the time from the second minute to the third minute before the seizure had the highest mean and the lowest variance to determine the systematic changes before the seizure. Thus, the highest performing process is described as EEG-Aura. The average success for the EEG-Aura process was 90.38 ± 6.28%, 89.78 ± 8.34% and 90.47 ± 5.95% for accuracy, specificity and sensitivity, respectively. Through the proposed model, epilepsy patients who do not respond to medical treatment methods are expected to maintain their lives in a more comfortable and integrated way.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiongliang Xiao ◽  
Yuee Fang

Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia to carry out daily life and rehabilitation training. However, due to the low signal-to-noise ratio and large individual differences, EEG feature extraction and classification have the problems of low accuracy and efficiency. To solve this problem, this paper proposes a recognition method of motor imagery EEG signal based on deep convolution network. This method firstly aims at the problem of low quality of EEG signal characteristic data, and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform (CMWT) to preprocess the collected experimental data sets based on time series characteristics. So as to obtain EEG signals that are distinct and have time-frequency characteristics. And based on the improved CNN network model to efficiently recognize EEG signals, to achieve high-quality EEG feature extraction and classification. Further improve the quality of EEG signal feature acquisition, and ensure the high accuracy and precision of EEG signal recognition. Finally, the proposed method is validated based on the BCI competiton dataset and laboratory measured data. Experimental results show that the accuracy of this method for EEG signal recognition is 0.9324, the precision is 0.9653, and the AUC is 0.9464. It shows good practicality and applicability.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2739 ◽  
Author(s):  
Rami Alazrai ◽  
Rasha Homoud ◽  
Hisham Alwanni ◽  
Mohammad Daoud

Accurate recognition and understating of human emotions is an essential skill that can improve the collaboration between humans and machines. In this vein, electroencephalogram (EEG)-based emotion recognition is considered an active research field with challenging issues regarding the analyses of the nonstationary EEG signals and the extraction of salient features that can be used to achieve accurate emotion recognition. In this paper, an EEG-based emotion recognition approach with a novel time-frequency feature extraction technique is presented. In particular, a quadratic time-frequency distribution (QTFD) is employed to construct a high resolution time-frequency representation of the EEG signals and capture the spectral variations of the EEG signals over time. To reduce the dimensionality of the constructed QTFD-based representation, a set of 13 time- and frequency-domain features is extended to the joint time-frequency-domain and employed to quantify the QTFD-based time-frequency representation of the EEG signals. Moreover, to describe different emotion classes, we have utilized the 2D arousal-valence plane to develop four emotion labeling schemes of the EEG signals, such that each emotion labeling scheme defines a set of emotion classes. The extracted time-frequency features are used to construct a set of subject-specific support vector machine classifiers to classify the EEG signals of each subject into the different emotion classes that are defined using each of the four emotion labeling schemes. The performance of the proposed approach is evaluated using a publicly available EEG dataset, namely the DEAPdataset. Moreover, we design three performance evaluation analyses, namely the channel-based analysis, feature-based analysis and neutral class exclusion analysis, to quantify the effects of utilizing different groups of EEG channels that cover various regions in the brain, reducing the dimensionality of the extracted time-frequency features and excluding the EEG signals that correspond to the neutral class, on the capability of the proposed approach to discriminate between different emotion classes. The results reported in the current study demonstrate the efficacy of the proposed QTFD-based approach in recognizing different emotion classes. In particular, the average classification accuracies obtained in differentiating between the various emotion classes defined using each of the four emotion labeling schemes are within the range of 73 . 8 % – 86 . 2 % . Moreover, the emotion classification accuracies achieved by our proposed approach are higher than the results reported in several existing state-of-the-art EEG-based emotion recognition studies.


Author(s):  
Mehmet Akif Ozdemir ◽  
Ozlem Karabiber Cura ◽  
Aydin Akan

Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.


2017 ◽  
Vol 27 (04) ◽  
pp. 1750005 ◽  
Author(s):  
Zhong-Ke Gao ◽  
Qing Cai ◽  
Yu-Xuan Yang ◽  
Na Dong ◽  
Shan-Shan Zhang

Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.


Sign in / Sign up

Export Citation Format

Share Document