scholarly journals Experimental Study of the Effect of the Expansion Segment Geometry on the Atomization of a Plain-Jet Airblast Atomizer

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yi Jin ◽  
Kanghong Yao ◽  
Xiaomin He ◽  
Kai Zhang ◽  
Yunbiao Wang

In this paper, the idea of adding an expansion segment over traditional airblast atomizer is proposed to improve the spray performance. According to the systematic experiments, the Sauter mean diameter, the droplet size distribution, and the droplet axial mean velocity were obtained to evaluate the spray performance. The correlations between spray performance and four geometrical parameters of the expansion segment which include the length, the angle, the throat area, and position of liquid jet are considered. The atomizer operates at atmospheric pressure and temperature, and the air liquid ratio range is from 0.48 to 2.85. The data of the results were measured by Phase Doppler Particle Analyzer. The results show that more uniform droplet size distribution can be achieved with the addition of expansion segment, and the droplet size distribution factor q of the case adding the expansion segment is 52.8% bigger than that of the case with no expansion segment. q increases as the length and angle of expansion segment increase. The Sauter mean diameter can be reduced by either reducing the length or angle of expansion segment. As for droplet velocity, it is determined that the droplet velocity increases along the radial direction, which is noteworthy because opposite trend is reported for traditional plain-jet atomizers. With an increase of the length, angle, and throat area of the expansion segment, the droplet axial velocity decays.

Author(s):  
M. M. Elkotb ◽  
M. A. Elsayed Mahdy ◽  
M. E. Montaser

A detailed investigation of the effect of nozzle/needle diameter ratio, normal fuel area, swirler degree, air pressure, fuel pressure on flow number, cone angle and droplet size distribution of external mixing twin fluid atomizers is given in this paper. Forty atomizers have been constructed to prevent mutual effect of various parameters. Flow number and cone angle are found to increase with nozzle/diameter ratio, and to decrease with the increase of air pressure. Optimum fuel flow is obtained at swirler angle 30-deg, while cone angle increases with increase of swirler angle. Sauter mean diameter decreases with the increase of air pressure and decrease of fuel pressure. Suitable functions are derived for droplet size distribution, Sauter mean diameter, and flow number. They are suitable to predict the geometry of the atomizer and to be used also in a prediction model for the calculation of fuel concentration and heat release.


Author(s):  
Selvan G. Muthu ◽  
H. S. Muralidhara ◽  
Vinod Kumar Vyas ◽  
Kanth T. P. Dinesh ◽  
S. Kumaran ◽  
...  

An experimental investigation was conducted to study the effects of increased area of inlet tangential ports on the performance of small scale simplex atomizer. The spray characteristics of three different simplex atomizer representing increasing area of inlet tangential ports are examined using water as a working fluid. Measurements of coefficient of discharge, spray cone angle, Sauter mean diameter and droplet size distribution were carried out over wide range of injection pressure. Coriolis mass flow meter was used to measure coefficient of discharge. Spray cone angle was measured by image processing technique. Sauter mean diameter and droplet size distributions were measured by Malvern droplet sizing instrument. It was observed that with increase in area of inlet tangential ports the size of air core produced along the center line reduced, which increases the coefficient of discharge. Spray cone angle decreases with increase in area of inlet tangential ports. It was found that increase in area of inlet tangential ports reduces swirl strength inside swirl chamber, which results in increasing Sauter mean diameter. Better droplet size distribution was observed for lower area of inlet tangential port configuration. The obtained experimental results were compared with experimental correlations available in literatures. Deviations in the obtained experimental results and experimental correlations was observed. This is due to difference in the size of atomizer used and difference in experimental techniques used between the present work and other investigations.


Author(s):  
Maohua Xiao ◽  
Yuanfang Zhao ◽  
Zhenmin Sun ◽  
Chaohui Liu ◽  
Tianpeng Zhang

Background: There are drift and volatilization of the droplets produced by the plant protection Unmanned Aerial Vehicle (UAV) under the influence of external wind speed and its flight speed. Objective: It studied the atomization characteristics of its fan-shaped atomizing nozzle under different inlet pressures and inner cavity diameters. Methods: For the start, the Realizable k-ε turbulence model, DPM discrete phase model and TAB breakup model are used to make a numerical simulation of the spray process of the nozzle. Then, the SIMPLE algorithm is used to obtain the droplet size distribution diagram of the nozzle atomization field. At last, the related test methods are used to study its atomization performance, and the changes of atomization angle and droplet velocity under different inlet pressures and inner cavity diameters and the distribution of droplet size are discussed. Results: The research results show that under the same inner cavity diameter, as the inlet pressure increases, the spray cone angle of the nozzle and the droplet velocity at the same distance from the nozzle increase. As the distance from the nozzle increases, the droplet velocity decreases gradually, the droplet size distribution moves to the direction of small diameter, and the droplets in the anti-drift droplet size area increase. Under the same inlet pressure, as the diameter of the inner cavity increases, the spray cone angle first increases and then decreases, and the droplet velocity at the same distance from the nozzle increases. As the distance from the nozzle increases, the droplet velocity decreases gradually, the droplet size distribution moves to the direction of large diameter, and the large size droplets increase, which cannot meet the anti-drift volatilization effect. Conclusion: Under the parameter set in this study, when the inlet pressure is 0.6MPa and the inner cavity diameter is 2mm, the atomization result is the best.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 676
Author(s):  
Lingzhen Kong ◽  
Tian Lan ◽  
Jiaqing Chen ◽  
Kuisheng Wang ◽  
Huan Sun

The breakup processes and droplet characteristics of a liquid jet injected into a low-speed air crossflow in the finite space were experimentally investigated. The liquid jet breakup processes were recorded by high-speed photography, and phase-Doppler anemometry (PDA) was employed to measure the droplet sizes and droplet velocities. Through the instantaneous image observation, the liquid jet breakup mode could be divided into bump breakup, arcade breakup and bag breakup modes, and the experimental regime map of primary breakup processes was summarized. The transition boundaries between different breakup modes were found. The gas Weber number (Weg) could be considered as the most sensitive dimensionless parameter for the breakup mode. There was a Weg transition point, and droplet size distribution was able to change from the oblique-I-type to the C-type with an increase in Weg. The liquid jet Weber number (Wej) had little effect on droplet size distribution, and droplet size was in the range of 50–150 μm. If Weg > 7.55, the atomization efficiency would be very considerable. Droplet velocity increased significantly with an increase in Weg of the air crossflow, but the change in droplet velocity was not obvious with the increase in Wej. Weg had a decisive effect on the droplet velocity distribution in the outlet section of test tube.


2001 ◽  
Vol 124 (1) ◽  
pp. 182-185 ◽  
Author(s):  
Jianming Cao

Droplet size distribution function and mean diameter formulas are derived using information theory. The effects of fuel droplet evaporation and coalescence within combustion chamber on the droplet size are emphasized in nonreactive diesel sprays. The size distribution function expressions at various spray axial cross sections are also formulated. The computations are compared with experimental data and KIVA-II code. A good agreement is obtained between numerical and experimental results. Droplet size distribution and mean diameter at various locations from injector exit and at various temperature conditions are predicted. The decreases of droplet number and variations of mean diameter are computed at downstream and higher temperature.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Sign in / Sign up

Export Citation Format

Share Document