breakup mode
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Yang Ma ◽  
Yongpan Cheng ◽  
Dongjie Zhang ◽  
Ke Zhang ◽  
Fan Wang

2021 ◽  
Vol 125 (1291) ◽  
pp. 1519-1541
Author(s):  
Y. Zhu ◽  
X. Sun ◽  
V. Sethi ◽  
P. Gauthier ◽  
S. Guo ◽  
...  

ABSTRACTThe commercial Computational Fluid Dynamics (CFD) software STAR-CCM+ was used to simulate the flow and breakup characteristics of a Liquid Jet Injected into the gaseous Crossflow (LJIC) under real engine operating conditions. The reasonable calculation domain geometry and flow boundary conditions were obtained based on a civil aviation engine performance model similar to the Leap-1B engine which was developed using the GasTurb software and the preliminary design results of its low-emission combustor. The Volume of Fluid (VOF) model was applied to simulate the breakup feature of the near field of LJIC. The numerical method was validated and calibrated through comparison with the public test data at atmospheric conditions. The results showed that the numerical method can capture most of the jet breakup structure and predict the jet trajectory with an error not exceeding ±5%. The verified numerical method was applied to simulate the breakup of LJIC at the real engine operating condition. The breakup mode of LJIC was shown to be surface shear breakup at elevated condition. The trajectory of the liquid jet showed good agreement with Ragucci’s empirical correlation.


2020 ◽  
Vol 10 (18) ◽  
pp. 6149
Author(s):  
Oleg A. Gobyzov ◽  
Mikhail N. Ryabov ◽  
Artur V. Bilsky

The problem of secondary atomization of droplets is crucial for many applications. In high-speed flows, fine atomization usually takes place, and the breakup of small droplets determines the final products of atomization. An experimental study of deformation and breakup of 15–60 µm size droplets in an accelerated flow inside a converging–diverging nozzle is considered in the paper. Particle image velocimetry and shadow photography were employed in the experiments. Results of gas and liquid phase flow measurements and visualization are presented and analyzed, including gas and droplets’ velocity, shape and size distributions of droplets. Weber numbers for droplets’ breakup are reported. For those small droplets at low Weber numbers, the presence of well-known droplets’ breakup morphology is confirmed, and rare “pulling” breakup mode is detected and qualitatively described. For the “pulling” breakup mode, a consideration, explaining its development in smaller droplets through shear stress effect, is provided.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 676
Author(s):  
Lingzhen Kong ◽  
Tian Lan ◽  
Jiaqing Chen ◽  
Kuisheng Wang ◽  
Huan Sun

The breakup processes and droplet characteristics of a liquid jet injected into a low-speed air crossflow in the finite space were experimentally investigated. The liquid jet breakup processes were recorded by high-speed photography, and phase-Doppler anemometry (PDA) was employed to measure the droplet sizes and droplet velocities. Through the instantaneous image observation, the liquid jet breakup mode could be divided into bump breakup, arcade breakup and bag breakup modes, and the experimental regime map of primary breakup processes was summarized. The transition boundaries between different breakup modes were found. The gas Weber number (Weg) could be considered as the most sensitive dimensionless parameter for the breakup mode. There was a Weg transition point, and droplet size distribution was able to change from the oblique-I-type to the C-type with an increase in Weg. The liquid jet Weber number (Wej) had little effect on droplet size distribution, and droplet size was in the range of 50–150 μm. If Weg > 7.55, the atomization efficiency would be very considerable. Droplet velocity increased significantly with an increase in Weg of the air crossflow, but the change in droplet velocity was not obvious with the increase in Wej. Weg had a decisive effect on the droplet velocity distribution in the outlet section of test tube.


2017 ◽  
Vol 833 ◽  
pp. 29-53 ◽  
Author(s):  
Rajarshi Sengupta ◽  
Lynn M. Walker ◽  
Aditya S. Khair

The deformation of a weakly conducting, ‘leaky dielectric’, drop in a density matched, immiscible weakly conducting medium under a uniform direct current (DC) electric field is quantified computationally. We exclusively consider prolate drops, for which the drop elongates in the direction of the applied field. Furthermore, for the majority of this study, we assume the drop and medium to have equal viscosities. Using axisymmetric boundary integral computations, we delineate drop deformation and breakup regimes in the $Ca_{E}-Re_{E}$ parameter space, where $Ca_{E}$ is the electric capillary number (ratio of the electric to capillary stresses); and $Re_{E}$ is the electric Reynolds number (ratio of charge relaxation to flow time scales), which characterizes the strength of surface charge convection along the interface. For so-called ‘prolate A’ drops, where the surface charge is convected towards the ‘poles’ of the drop, we demonstrate that increasing $Re_{E}$ reduces the critical capillary number for breakup. Moreover, surface charge convection is the cause of an abrupt transition in the breakup mode of a drop from end pinching, where the drop elongates and develops bulbs at its ends that eventually detach, to a breakup mode characterized by the formation of conical ends. On the contrary, the deformation of ‘prolate B’ drops, where the surface charge is convected away from the poles, is essentially unaffected by the magnitude of $Re_{E}$.


Author(s):  
Anand T.N.C ◽  
Senthilkumar P ◽  
Shamit Bakshi

Selective Catalytic Reduction (SCR) using Urea-Water Solution (UWS) as an ammonia precursor is consideredas one of the best choices to meet the current stringent emission norms for reduction of NOX in diesel engines. UWS sprayed in the engine exhaust line forms ammonia, and this ammonia reduces NOX into nitrogen. The NOX reduction efficiency depends on the mixing and evaporation behavior of the UWS spray in the hot exhaust gas. Spray characteristics decide the evaporation rate and hence the NOX reduction efficiency. The spray structure is closely related to the breakup point and breakup mode of the jet. Hence, in this study, breakup length and breakup mode were investigated by injecting UWS (32.5 % by weight) through a nozzle in a hot air cross flow. A CCD camera and pulsed Nd:Yag laser were used for capturing the images. Experiments were conducted with varying nozzle size (150, 250 and 400 micron), injection pressure (0.5 to 3 bar), temperature (32 °C,150 °C and 200 °C) and air flow rate. The effect of operating parameters (nozzle size, injection pressure, air temperature and velocity) in terms of dimensionless numbers (Weber number and momentum flux ratio) on jet breakup mode and jet breakup length was studied. It was observed that the breakup length for UWS was close to that of water. The jet breakup length increases with momentum flux ratio since a jet having a higher momentum is able to penetrate a larger distance in the cross flow. Increasing the air temperature increases the velocity of the cross flow and hence reduces the breakup length. A correlation for jet breakup length was developed. The effect of inclusion of Weber number in the breakup length correlation, in addition to the momentum flux ratio, was studied. Visual observation shows that droplet sizes obtained from the plain orifice injector without preheating is large. Preheatingthe UWS before injection is recommended to reduce the droplet size.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4982


2017 ◽  
Vol 58 (3) ◽  
Author(s):  
Hui Zhao ◽  
Wen-Bin Zhang ◽  
Jian-Liang Xu ◽  
Wei-Feng Li ◽  
Hai-Feng Liu

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Qing Zhang ◽  
Xudong Song ◽  
Qinghua Guo ◽  
Yan Gong ◽  
Chonghe Hu ◽  
...  

The breakup regime in ethanol diffusion flame under different conditions was studied by the high speed camera system combined with the UV camera system. Spray angle and Weber number (We) were used to represent the change of breakup regime. With the increases of spray angle and We, the breakup mode changes from the Rayleigh-type breakup regime to the superpulsating regime. The reaction area and intensity of ethanol flames under different breakup regimes could be discussed by theOH⁎distribution. From Rayleigh-type breakup regime to superpulsating breakup regime, theOH⁎distribution increased and the oxidation-reduction reaction area expanded. At the condition of superpulsating breakup mode, the intensity ofOH⁎was significantly higher than that of other modes. The flame luminous length can be obtained by theOH⁎emission, andOH⁎distribution reflects the structure of flame. When the breakup regime changes from the fiber-type breakup regime to the superpulsating regime, the flame luminous length increases suddenly.


Sign in / Sign up

Export Citation Format

Share Document