scholarly journals Medical Image Encryption Based on 2D Zigzag Confusion and Dynamic Diffusion

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Shanshan Li ◽  
Li Zhao ◽  
Na Yang

For the security of medical image, a new algorithm of medical image encryption is designed. The novel algorithm is based on a chaotic system composed of the two-dimensional Sine Logistic modulation map (2D-SLMM) and the two-dimensional Hénon-Sine map (2D-HSM). The main encryption procedure includes zigzag scan scramble, pixel grey value transformation, and dynamic diffusion. On the pixel grey value transformation stage, a password feedback is added. This makes the relationship between password and key more complicated. The proposed scheme is lossless for medical image encryption and decryption. It avoids the problems of low-dimensional chaotic map such as narrow interval and few parameters, as well as the problem of the special texture and contour of medical images. The key space of the novel algorithm is big enough, and the encryption and decryption processing are sensitive to the key. Simulation and experiments validate the effectiveness and efficiency of the novel algorithm. Security analysis proves the algorithm is resistant to common attacks.

Author(s):  
F. Rougaii ◽  
T. Mazri

Abstract. Recent years have seen a new amalgamation between Remote virtual doctor systems and healthcare IoT applications which plays a crucial role in enhancing patient’s healthcare life. The Remote VDS connected with smart Healthcare devices through the wireless network to be accessible anytime and anywhere is anticipated to treat rapidly valuable and confidential data such as personal medical images. Therefore, quick medical image encryption is an essential task in healthcare topic. Some medical image encryption research like the Scan methodology proposed for Remote VDS suffers from a long computational time. Then, the patient will confront difficulty on treatment availability in real-time and especially for critical situations. To overcome this problem, in this work, three medical image encryption methods are compared, (1) A Lightweight Encryption Technique to Enhance Medical Image Security on Internet of Medical Things Applications, (2) A new chaotic map with dynamic analysis and encryption application on the Internet of Health Things, and (3) Robust medical image encryption based on DNA chaos method. The comparison results have proven that the new chaotic map with a dynamic analysis scheme has high-security analysis and performances with low computational time compared to other methods. That makes it a good candidate for the H-IOT-RVDS environment connecting over 5G technology like a cellular network to enable connectivity between nodes.


Author(s):  
Mona F. M. Mursi ◽  
Hossam Eldin H. Ahmed ◽  
Fathi E. Abd El-Samie ◽  
Ayman H. Abd El-Aziem

In this paper, the authors propose an image encryption scheme based on the development of a Hénon chaotic map using fractional Fourier transform (FRFT) which is introduced to satisfy the necessity of high secure image. This proposed algorithm combines the main advantages of confusion and diffusion with (FRFT), it use Arnold Cat map for confusion and Hénon chaotic map or one of the proposed Hénon chaotic maps for diffusion. The proposed algorithm is compared with some image encryption algorithms based on Arnold Cat map, Baker chaotic map, Hénon chaotic map and RC6. The authors perform a comparison between them in several experimental tests as statistical analyses, processing time and security analysis. The authors find from these comparison tests that the proposed algorithm demonstrates good result even better than RC6 and other chaotic maps in some cases.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

Given that the sequences generated by logistic map are unsecure with a number of weaknesses, including its relatively small key space, uneven distribution, and vulnerability to attack by phase space reconstruction, this paper proposes a new two-dimensional mutual coupled logistic map, which can overcome these weaknesses. Our two-dimensional chaotic map model is simpler than the recently proposed three-dimensional coupled logistic map, whereas the sequence generated by our system is more complex. Furthermore, a new kind of pseudorandom number generator (PRNG) based on the mutual coupled logistic maps is proposed for application. Both statistical tests and security analysis show that our proposed PRNG has good randomness and that it can resist all kinds of attacks. The algorithm speed analysis indicates that PRNG is valuable to practical applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Qiang Zhang ◽  
Xianglian Xue ◽  
Xiaopeng Wei

We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.


2018 ◽  
Vol 29 (07) ◽  
pp. 1850058 ◽  
Author(s):  
Nabil Ben Slimane ◽  
Nahed Aouf ◽  
Kais Bouallegue ◽  
Mohsen Machhout

In this paper, an efficient scheme for image encryption based on the nested chaotic map and deoxyribonucleic acid (DNA) is introduced. In order to generate the initial condition values of the nested chaotic system, the Secure Hash Algorithm SHA-256 is used. The algorithm consists of two main layers: confusion and diffusion. In the first layer, the nested chaotic map is employed to create the scrambled image. The scrambled image is obtained through the ascending sorting of the first component of the nested chaotic index sequence. To ensure higher sensitivity, higher complexity and higher security, DNA sequence and DNA operator are employed additionally with the nested chaotic map and hash algorithm to modify the pixel values. The important advantages of our algorithm are the improvement of Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI) and entropy, which improve resistivity against several attacks. Experimental results and relevant security analysis demonstrated that our proposed encryption scheme has the highest security level because it is more complicated, and it has a sufficiently large key space. The proposed method is compared to other recent image encryption schemes using different security analysis factors, including NPCR, UACI, correlation coefficients (CCs), encryption quality (EQ) and entropy. It is also resistant to noise (Salt and Pepper, Gaussian and speckle) and data loss attacks. The illustrated results demonstrated that the proposed image encryption scheme is efficient, and can be adopted for image encryption and transmission.


2015 ◽  
Vol 719-720 ◽  
pp. 1030-1037
Author(s):  
Tao Song

In recent years, chaos-based image encryption technologies have been widely studied to meet the increasing demand for real-time secure image transmission applications. To overcome the drawbacks of small key space and weak security in many existing schemes based on low-dimensional chaotic maps, this paper suggests a security improved scheme with a permutation-diffusion architecture. In the permutation stage, baker map is employed to shuffle the pixel positions. In the diffusion stage, the value of each pixel is altered by using a key stream derived from hyperchaotic system. Compared with ordinary chaotic systems, hyperchaotic systems, with more complex dynamical behaviors and number of system variables, offer greater potential for secure cryptosystem construction. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, statistical analysis and key sensitivity, which has demonstrated the satisfactory security of the proposed scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Hui Ren ◽  
Jun Wang ◽  
Qiong-Hua Wang

We introduce an image encryption method based on computer-generated hologram (CGH) and two-dimensional Sine Logistic modulation map (2D-SLMM). We combine CGH and 2D-SLMM to improve encryption security. During the encryption process, the hologram needs to be logistically modulated by 2D-SLMM. This logistic modulation technique can avoid complex algorithms. Simulation results and security analysis demonstrate that the proposed approach has a high security level, good invisibility of image information in ciphertext, large key space, and strong robustness.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Zeyu Liu ◽  
Tiecheng Xia ◽  
Jinbo Wang

A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC). Finally, the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.


Sign in / Sign up

Export Citation Format

Share Document