scholarly journals Fisetin Alleviates Neointimal Hyperplasia via PPARγ/PON2 Antioxidative Pathway in SHR Rat Artery Injury Model

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fang Pei ◽  
Hua Pei ◽  
Chunhua Su ◽  
Lin Du ◽  
Jifen Wang ◽  
...  

The phenotypic transformation of proliferation and migration in vascular smooth muscle cells (VSMCs) from media to intima is the basic pathology of neointimal hyperplasia after angioplasty in hypertensive patients. Angiotensin II (AngII) stimulates oxidative stress in VSMC, inducing VSMC proliferation and migration, which is a critical factor in both developments of hypertension and angioplasty-induced arterial restenosis. Fisetin, a plant flavonoid polyphenol, has been reported to be antioxidative and potent senolytic. It is unknown whether fisetin would inhibit neointimal hyperplasia. Therefore, we investigated the role of fisetin in neointimal formation in vitro and in vivo. The rat thoracic aortic smooth muscle cells (A10 cells) stimulated by AngII were used as the in vitro neointimal hyperplasia model, where AngII significantly induced the proliferation and migration in A10 cells. We found that fisetin could dose-dependently inhibit the effect of AngII via inducing the expression of an antioxidant, paraoxonase-2 (PON2), whose overexpression could inhibit the proliferation and migration of A10 cells and downexpression by siRNA had the opposite effect. Furthermore, we found the mechanism of fisetin’s inducing PON2 expression involved PPARγ. Rosiglitazone, a PPARγ agonist, could increase PON2 expression in A10 cells, while the PPARγ inhibitor prevented the effect of fisetin on PON2. The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. Administration of fisetin (ip 3 mg/kg daily for 2 weeks) right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently reduced carotid neointimal hyperplasia. These results indicate that fisetin increases the expression of antioxidant PON2 via activation of PPARγ, reducing oxidative stress, inhibiting VSMC proliferation and migration, and alleviates neointimal hyperplasia after intimal injury. PON2 may be a potential therapeutic target to reduce arterial remodeling after angioplasty in hypertensive patients.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Tatsuya Usui ◽  
Muneyoshi Okada ◽  
Hideyuki Yamawaki

Histone deacetylases (HDACs) are transcriptional co-regulators. We have recently demonstrated that a class IIa HDAC, HDAC4 promotes reactive oxygen species (ROS)-dependent vascular smooth muscle inflammation and mediates the development of hypertension in spontaneously hypertensive rats. Pathogenesis of hypertension is in part modulated by vascular structural remodeling via proliferation and migration of vascular smooth muscle cells (SMCs). We thus examined whether HDAC4 controls SMCs proliferation and migration. In rat mesenteric arterial SMCs, small interfering RNA (siRNA) against HDAC4 inhibited platelet-derived growth factor (PDGF)-BB-induced SMCs proliferation as determined by a cell counting (51% inhibition, n=7) or bromodeoxyuridine incorporation assay (95% inhibition, n=6) and migration as determined by Boyden chamber assay (71% inhibition, n=3). Expression and activity of HDAC4 were increased by PDGF-BB (30% increase, n=5 and 170% increase, n=4, respectively). HDAC4 siRNA inhibited phosphorylation of p38 (69% inhibition, n=5) and heat shock protein (HSP) 27 (91% inhibition, n=5) and expression of cyclin D1 (58% inhibition, n=5) as measured by Western blotting. HDAC4 siRNA also inhibited PDGF-BB-induce ROS production as measured fluorometrically using 2’ 7’-dichlorofluorescein diacetate (77% inhibition, n=4) and nicotinamide adenine dinucleotide phosphate oxidase activity as measured by lucigenin assay (61% inhibition, n=4). A Ca 2+ /calmodulin (CaM)-dependent protein kinase (CaMK) II inhibitor, KN93 inhibited PDGF-BB-induced SMCs proliferation (58% inhibition, n=4) and migration (75% inhibition, n=3) as well as phosphorylation of HDAC4 (84% inhibition, n=4). In vivo, a class IIa HDACs inhibitor, MC1568 prevented neointimal hyperplasia in mice carotid ligation model (54% inhibition, n=6). MC1568 also inhibited increased activity of HDAC4 in the neointimal lesions. The present results for the first time demonstrate that HDAC4 controls PDGF-BB-induced SMCs proliferation and migration through activation of p38/HSP27 signals via ROS generation in a CaMKII-dependent manner, which may lead to the neointima hyperplasia in vivo.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0168092 ◽  
Author(s):  
Chin-Chuan Chen ◽  
Chan-Jung Liang ◽  
Yann-Lii Leu ◽  
Yuh-Lien Chen ◽  
Shu-Huei Wang

2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Haijun Wang ◽  
Zheng Wei ◽  
Hulun Li ◽  
Yinghui Guan ◽  
Zhiyang Han ◽  
...  

Abstract Vascular smooth muscle cell (VSMC) proliferation and migration are vital to atherosclerosis (AS) development and plaque rupture. MicroRNA-377-3p (miR-377-3p) has been reported to inhibit AS in apolipoprotein E knockout (ApoE−/−) mice. Herein, the mechanism underlying the effect of miR-377-3p on alleviating AS is explored. In vivo experiments, ApoE−/− mice were fed with high-fat diet (HFD) to induce AS and treated with miR-377-3p agomir or negative control agomir (agomir-NC) on week 0, 2, 4, 6, 8, 10 after HFD feeding. MiR-377-3p was found to restore HFD-induced AS lesions and expressions of matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin (α-actin) and calponin. In in vitro experiments, human VSMCs were tranfected with miR-377-3p agomir or agomir-NC, followed by treatment with oxidized low-density lipoprotein (ox-LDL). MiR-377-3p was observed to significantly inhibit ox-LDL-induced VSMC proliferation characterized by inhibited cell viability, expressions of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E and cell cycle transition from G1 to S phase accompanied with less 5-Ethynyl-2′-deoxyuridine (EdU)-positive cells. Furthermore, MiR-377-3p significantly inhibited ox-LDL-induced VSMC migration characterized by inhibited wound closure and decreased relative VSMC migration. Besides, neuropilin2 (NRP2) was verified as a target of miR-377-3p. MiR-377-3p was observed to inhibit NRP2 expressions in vivo and in vitro. Moreover, miR-377-3p significantly inhibited MMP-2 and MMP-9 expressions in human VSMCs. Additionally, miR-377-3p-induced inhibition of VSMC proliferation and migration could be attenuated by NRP2 overexpression. These results indicated that miR-377-3p inhibited VSMC proliferation and migration via targeting NRP2. The present study provides an underlying mechanism for miR-377-3p-based AS therapy.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Lisheng Zhang ◽  
Jiaohui Wu ◽  
Andrew J Vista ◽  
Leigh Brian ◽  
Yushi Bai ◽  
...  

Reactive oxygen species (ROS) contribute to atherogenesis. An unusual mechanism that increases cellular ROS levels and oxidative stress involves 4 ubiquitously expressed noncoding small nucleolar RNAs (snoRNAs) from introns of the ribosomal protein L13a ( Rpl13a ) locus: U32a , U33 , U34 , and U35a . We tested the hypothesis that these snoRNAs promote aortic smooth muscle cell (SMC) activation and vascular inflammation, by using “snoKO” mice with targeted deletion of the 4 snoRNAs (but not Rpl13a ). Compared with congenic WT SMCs, snoKO SMCs showed 40±20% lower ROS levels, assessed by DCF fluorescence ( p <0.02). Congruently, ROS levels were 35±5% lower in snoKO than WT aorta and carotid frozen sections ( p <0.01), assessed by CellROX Orange fluorescence. Proliferation and migration evoked by FBS and PDGF-BB, respectively, were each 30±10% less in snoKO than WT SMCs ( p <0.01 for each). To assess SMC migration and proliferation in vivo, we performed carotid artery endothelial denudation. Before injury, snoKO and WT carotid arteries were morphologically equivalent. Four wk after injury, carotid neointimal hyperplasia was 57±9% less and luminal area was 40±20 % more in snoKO than in WT mice ( p <0.01). WT and snoKO mice had equivalent heart rates and systolic blood pressures by tail-cuff plethysmography: 480±20 vs 420±80 beats/min; 133±5, 132±7 mm Hg, respectively (n=5/group). To test whether snoRNAs affect atherosclerosis, we orthotopically transplanted carotid arteries from WT and snoKO mice into congenic Apoe -/- mice. Six wk post-op, atherosclerotic neointima was 70±10% smaller in snoKO than in WT carotids ( p <0.01). To assess SMC-to-foam-cell transdifferentiation, which is ROS-dependent, carotid cross-sections were stained for apoE to identify graft-derived cells and for cholesteryl ester with BODIPY. BODIPY + foam cells comprised 21±3% and 11±7% of neointimal area in WT and snoKO carotids, respectively ( p <0.05). Confocal co-localization of apoE and BODIPY (optical slice thickness 1 μm) showed that graft-derived foam cells were 2.0±0.6-fold more prevalent in WT than in snoKO carotids ( p <0.01). We conclude that Rpl13a snoRNAs promote SMC ROS levels, proliferation and migration in vitro and in vivo, and that these snoRNAs augment atherosclerosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixiong Ji ◽  
Jiaqi Li ◽  
Jianbo Wang

The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
xiangqin he ◽  
Kunzhe Dong ◽  
Jian Shen ◽  
Islam Osman ◽  
Guoqing Hu ◽  
...  

Introduction: Restenosis after percutaneous intervention is predominantly attributed to proliferation and migration of vascular smooth muscle cells (VSMCs). However, the key regulators responsible for VSMC proliferation and migration remain to be identified. Hypothesis: We previously reported that the novel high mobility group (HMG) nuclear protein HMGXB4 (HMG-Box containing 4) plays a critical role in the de-differentiation of vascular smooth muscle cells in vitro and in acute inflammatory response to septic shock. We hypothesize that HMGXB4 is critical for neointimal hyperplasia in response to inflammatory stimuli. Methods and Results: We found that the expression of HMGXB4 is dramatically induced in ligation or wire injury-induced neointimal hyperplasia and correlated with the activation of inflammatory signaling in mice. Using an inducible smooth muscle-specific Hmgxb4 KO (knockout) mice model, we found specific KO of Hmgxb4 in VSMCs ameliorates ligation- or wire- injury induced neointimal formation. Among an array of growth factors and inflammation cytokines, we found that TNFα and INFγ effectively induces the expression of HMGXB4 in VSMCs and correlates with the VSMC proliferation in vitro. Furthermore, we found deletion of HMGXB4 attenuates while over-expression of HMGXB4 promotes inflammation cytokines-induced VSMC proliferation in vitro. These results suggest injury-induced inflammatory signal triggers HMGXB4 induction, which, in turn, promotes the VSMC proliferation and neointimal formation. Conclusions: Our study not only demonstrates a critical role of HMGXB4 in promoting neointimal hyperplasia in response the arterial injury, but also suggests HMGXB4 is a potential novel target for the management of restenosis in human.


Author(s):  
XIAOCHUN LU ◽  
SHITANG MA ◽  
BO ZHOU ◽  
TIELING LI

Background: Diabetic vascular smooth muscle cells (VSMCs) are characterized by increased proliferation and migration. Small non-coding microRNAs (miRNAs) have been considered critical modulators of VSMC phenotypic switch after an environmental stimulus. However, microRNA in high glucose-induced pro-inflammation and its atherogenic effect is still ambiguous. Methods: qRT-PCR was used to examine the expression of miR-9 in VSMCs. The downstream signaling protein relative to miR-9 regulation, Krüppel-like factor 5, and some marker genes of contractile VSMCs, were analyzed by western blotting and qRT-PCR. Luciferase reporter assay was used to detect the expression of KLF5, which is regulated by miR-9. To examine the function of a miR-9 inhibitor in VSMC proliferation and migration, VSMC proliferation and migration assays were performed. Results: Reduced transcriptional levels of miR-9 and expression of specific genes of contractile VSMCs were observed in the SMC cell line C-12511 treated with high glucose and SMCs, which were isolated from db/db mice. Moreover, the activity of KLF5 3′-UTR was dramatically reduced by a miR-9 mimic, and increased by a miR-9 inhibitor. The proliferation and migration of SMCs was reduced by the miR-9 mimic. Conclusion: miR-9 inhibits the proliferation and migration of SMC by targeting KLF5 in db/db mice. Keywords: miR-9; Smooth muscle cells; Proliferation; Migration; KLF5


Sign in / Sign up

Export Citation Format

Share Document