Abstract 15691: The Novel High Mobility Group Protein Hmgxb4 Promotes Neointimal Formation in Response to Arterial Injury

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
xiangqin he ◽  
Kunzhe Dong ◽  
Jian Shen ◽  
Islam Osman ◽  
Guoqing Hu ◽  
...  

Introduction: Restenosis after percutaneous intervention is predominantly attributed to proliferation and migration of vascular smooth muscle cells (VSMCs). However, the key regulators responsible for VSMC proliferation and migration remain to be identified. Hypothesis: We previously reported that the novel high mobility group (HMG) nuclear protein HMGXB4 (HMG-Box containing 4) plays a critical role in the de-differentiation of vascular smooth muscle cells in vitro and in acute inflammatory response to septic shock. We hypothesize that HMGXB4 is critical for neointimal hyperplasia in response to inflammatory stimuli. Methods and Results: We found that the expression of HMGXB4 is dramatically induced in ligation or wire injury-induced neointimal hyperplasia and correlated with the activation of inflammatory signaling in mice. Using an inducible smooth muscle-specific Hmgxb4 KO (knockout) mice model, we found specific KO of Hmgxb4 in VSMCs ameliorates ligation- or wire- injury induced neointimal formation. Among an array of growth factors and inflammation cytokines, we found that TNFα and INFγ effectively induces the expression of HMGXB4 in VSMCs and correlates with the VSMC proliferation in vitro. Furthermore, we found deletion of HMGXB4 attenuates while over-expression of HMGXB4 promotes inflammation cytokines-induced VSMC proliferation in vitro. These results suggest injury-induced inflammatory signal triggers HMGXB4 induction, which, in turn, promotes the VSMC proliferation and neointimal formation. Conclusions: Our study not only demonstrates a critical role of HMGXB4 in promoting neointimal hyperplasia in response the arterial injury, but also suggests HMGXB4 is a potential novel target for the management of restenosis in human.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Kang Xu ◽  
Mohanad Kh Al-ani ◽  
Xin Pan ◽  
Qingjia Chi ◽  
Nianguo Dong ◽  
...  

Natural products are used widely for preventing intimal hyperplasia (IH), a common cardiovascular disease. Four different cells initiate and progress IH, namely, vascular smooth muscle, adventitial and endothelial cells, and circulation or bone marrow-derived cells. Vascular smooth muscle cells (VSMCs) play a critical role in initiation and development of intimal thickening and formation of neointimal hyperplasia. In this review, we describe the different originating cells involved in vascular IH and emphasize the effect of different natural products on inhibiting abnormal cellular functions, such as VSMC proliferation and migration. We further present a classification for the different natural products like phenols, flavonoids, terpenes, and alkaloids that suppress VSMC growth. Abnormal VSMC physiology involves disturbance in MAPKs, PI3K/AKT, JAK-STAT, FAK, and NF-κB signal pathways. Most of the natural isolate studies have revealed G1/S phase of cell cycle arrest, decreased ROS production, induced cell apoptosis, restrained migration, and downregulated collagen deposition. It is necessary to screen optimal drugs from natural sources that preferentially inhibit VSMC rather than vascular endothelial cell growth to prevent early IH, restenosis following graft implantation, and atherosclerotic diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fang Pei ◽  
Hua Pei ◽  
Chunhua Su ◽  
Lin Du ◽  
Jifen Wang ◽  
...  

The phenotypic transformation of proliferation and migration in vascular smooth muscle cells (VSMCs) from media to intima is the basic pathology of neointimal hyperplasia after angioplasty in hypertensive patients. Angiotensin II (AngII) stimulates oxidative stress in VSMC, inducing VSMC proliferation and migration, which is a critical factor in both developments of hypertension and angioplasty-induced arterial restenosis. Fisetin, a plant flavonoid polyphenol, has been reported to be antioxidative and potent senolytic. It is unknown whether fisetin would inhibit neointimal hyperplasia. Therefore, we investigated the role of fisetin in neointimal formation in vitro and in vivo. The rat thoracic aortic smooth muscle cells (A10 cells) stimulated by AngII were used as the in vitro neointimal hyperplasia model, where AngII significantly induced the proliferation and migration in A10 cells. We found that fisetin could dose-dependently inhibit the effect of AngII via inducing the expression of an antioxidant, paraoxonase-2 (PON2), whose overexpression could inhibit the proliferation and migration of A10 cells and downexpression by siRNA had the opposite effect. Furthermore, we found the mechanism of fisetin’s inducing PON2 expression involved PPARγ. Rosiglitazone, a PPARγ agonist, could increase PON2 expression in A10 cells, while the PPARγ inhibitor prevented the effect of fisetin on PON2. The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. Administration of fisetin (ip 3 mg/kg daily for 2 weeks) right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently reduced carotid neointimal hyperplasia. These results indicate that fisetin increases the expression of antioxidant PON2 via activation of PPARγ, reducing oxidative stress, inhibiting VSMC proliferation and migration, and alleviates neointimal hyperplasia after intimal injury. PON2 may be a potential therapeutic target to reduce arterial remodeling after angioplasty in hypertensive patients.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2006 ◽  
Vol 173 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Rong Hou ◽  
Liming Liu ◽  
Syed Anees ◽  
Shungo Hiroyasu ◽  
Nicholas E.S. Sibinga

The significance of cadherin superfamily proteins in vascular smooth muscle cell (VSMC) biology is undefined. Here we describe recent studies of the Fat1 protocadherin. Fat1 expression in VSMCs increases significantly after arterial injury or growth factor stimulation. Fat1 knockdown decreases VSMC migration in vitro, but surprisingly, enhances cyclin D1 expression and proliferation. Despite limited similarity to classical cadherins, the Fat1 intracellular domain (Fat1IC) interacts with β-catenin, inhibiting both its nuclear localization and transcriptional activity. Fat1 undergoes cleavage and Fat1IC species localize to the nucleus; however, inhibition of the cyclin D1 promoter by truncated Fat1IC proteins corresponds to their presence outside the nucleus, which argues against repression of β-catenin–dependent transcription by nuclear Fat1IC. These findings extend recent observations about Fat1 and migration in other cell types, and demonstrate for the first time its anti-proliferative activity and interaction with β-catenin. Because it is induced after arterial injury, Fat1 may control VSMC functions central to vascular remodeling by facilitating migration and limiting proliferation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Y. Wendan ◽  
J. Changzhu ◽  
S. Xuhong ◽  
C. Hongjing ◽  
S. Hong ◽  
...  

In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscleα-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qi Wu ◽  
Yuanyang Chen ◽  
Zhiwei Wang ◽  
Xin Cai ◽  
Yanjia Che ◽  
...  

Mangiferin is a naturally occurring xanthone C-glycoside that is widely found in various plants. Previous studies have reported that mangiferin inhibits tumor cell proliferation and migration. Excessive proliferation and migration of vascular smooth muscle cells (SMCs) is associated with neointimal hyperplasia in coronary arteries. However, the role and mechanism of mangiferin action in neointimal hyperplasia is still unknown. In this study, a mouse carotid artery ligation model was established, and primary rat smooth muscle cells were isolated and used for mechanistic assays. We found that mangiferin alleviated neointimal hyperplasia, inhibited proliferation and migration of SMCs, and promoted platelets derive growth factors-BB- (PDGF-BB-) induced contractile phenotype in SMCs. Moreover, mangiferin attenuated neointimal formation by inhibiting mitochondrial fission through the AMPK/Drp1 signaling pathway. These findings suggest that mangiferin has the potential to maintain vascular homeostasis and inhibit neointimal hyperplasia.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Emily Nguyen ◽  
Olha Koval ◽  
Isabella Grumbach

Background: Restenosis after angioplasty for coronary vascular disease remains a critical problem in cardiovascular medicine. Vascular smooth muscle cell (VSMC) migration and proliferation cause restenosis through neointima formation. Mitochondrial motility is likely necessary for cell proliferation and migration, and is inhibited in microdomains with increased Ca 2+ . The Ca 2+ /calmodulin-dependent kinase II (CaMKII) in mitochondria (mtCaMKII) is proposed to control mitochondrial matrix Ca 2+ uptake through mitochondrial Ca 2+ uniporter (MCU). Thus, we hypothesized that blocking mtCaMKII decreases VSMC migration and neointima formation by decreasing mitochondrial motility. Methods: mtCaMKII was inhibited by expression of the mitochondria-targeted CaMKII inhibitor peptide (CaMKIIN) in a novel transgenic mouse model in smooth muscle only (SM-mtCaMKIIN) or delivered by adenoviral transduction (Ad-mtCaMKIIN). Results: In our models, mtCaMKIIN was detected selectively in mitochondria of VSMC. mtCaMKIIN significantly reduced mitochondrial Ca 2+ current and Ca 2+ content compared to WT in vivo and in vitro. SM-mtCaMKIIN mice showed significantly reduced neointimal area 28 days after endothelial injury (n=8, p<0.05) and fewer proliferating neointimal cells by PCNA staining. In vitro, Ad-mtCaMKIIN mildly reduced VSMC proliferation and mitochondrial ROS production without altering maximal respiration after PDGF treatment. Ad-mtCaMKIIN abolished VSMC migration, as did mitoTEMPO and MCU inhibitor Ru360. Ad-mtCaMKIIN blocked mitochondrial mobility towards the leading edge, while relocation of mitochondria was seen in WT cells 6 h after PDGF treatment. Mitochondrial redistribution was also inhibited by Ru360, but not by mitoTEMPO or cytoplasmic CaMKII inhibition. Mitochondrial fission promotes cell migration. Accordingly, PDGF increased mitochondrial particles in WT VSMC, while mitochondria in Ad-mtCaMKIIN cells were fragmented and unresponsive to PDGF treatment. Conclusions: mtCaMKIIN prevents mitochondrial distribution to the leading edge and reduces VSMC migration and neointima formation. These data suggest mitochondrial Ca 2+ regulation plays an important role in VSMC migration by altering mitochondrial location.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ting-Hein Lee ◽  
Shigekazu Nagata ◽  
Kamran Atabai ◽  
Hou-Yu Chiang

Vascular remodeling, defined as a change in the geometry of the vessel wall, occurs in the pathological process of vascular diseases, like atherosclerosis, hypertension and restenosis. The resulting neointimal formation is a part of a reparative response including thrombosis, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, which lead to the stenosis of blood vessels and the restricted blood flow. Milk fat globule epidermal growth factor VIII (Mfge8), a secreted glycoprotein, is well-characterized for its capacity of assisting the clearance of apoptotic cells in vascular system. Recently, Mfge8 has been identified as a pivot relay between pro-inflammatory signals and activated VSMCs, contributing to intima-media thickening of the vessel wall by promoting VSMC proliferation and migration in aged arteries. We have noted intense Mfge8 expression in the endothelial cells and VSMCs of the carotid artery following ligation injury in mice, suggesting that Mfge8 may regulate the two characteristics of vascular remodeling, inflammatory cell infiltration and VSMC activation, in response to low blood flow. To elucidate the functions of Mfge8 in a flow-induced model of vascular remodeling, a complete carotid ligation was conducted in wild-type (WT) or Mfge8 knockout (KO) mice. Morphometric analysis demonstrated that genetic deletion of Mfge8 in mice reduces carotid intima and media thickening compared to WT mice. Deficiency of Mfge8 prevented VSMC phenotypic modulation, as evidenced by the decreased expression of smooth muscle myosin heavy chain and attenuated cell proliferation in tunica media after ligation injury. VSMCs transfected with SiRNA against Mfge8 migrated slower than in controls as early as 0.5 days post-platelet-derived growth factor (PDGF) stimulation. Further, Mfge8-null mice showed a dramatic decrease in leukocyte infiltration into the vessel wall. Collectively, in a flow-induced model of vascular remodeling, Mfge8 plays a crucial role in VSMC migration and proliferation, as well as inflammatory cell accumulation, thereby regulating neointimal formation.


2018 ◽  
Vol 50 (5) ◽  
pp. 1740-1753 ◽  
Author(s):  
Shoucui Gao ◽  
Liran Xu ◽  
Yali Zhang ◽  
Qingqing Yu ◽  
Jiayan Li ◽  
...  

Background/Aims: The proliferation and migration of vascular smooth muscle cells (VSMCs) are key steps in the progression of atherosclerosis. The aim of the present study was to investigate the potential roles of salusin-α in the functions of VSMCs during the development of atherosclerosis. Methods: In vivo, the effects of salusin-α on atherogenesis were examined in rabbits fed a cholesterol diet. The aortas were en face stained with Sudan IV to evaluate the gross atherosclerotic lesion size. The cellular components of atherosclerotic plaques were analyzed by immunohistochemical methods. In vitro, Cell Counting Kit-8 and wound-healing assays were used to assess the effects of salusin-α on VSMC proliferation and migration. In addition, western blotting was used to evaluate the total and phosphorylated levels of Akt (also known as protein kinase B) and mammalian target of rapamycin (mTOR) in VSMCs. Results: Salusin-α infusion significantly reduced the aortic lesion areas of atherosclerosis, with a 39% reduction in the aortic arch, a 71% reduction in the thoracic aorta, and a 71% reduction in the abdominal aorta; plasma lipid levels were unaffected. Immunohistochemical staining showed that salusin-α decreased both macrophage- and VSMC-positively stained areas in atherosclerotic lesions by 54% and 69%, cell proliferative activity in the intima and media of arteriosclerotic lesions, and matrix metalloproteinase 2 (MMP-2) and MMP-9 expression in plaques. Studies using cultured VSMCs showed that salusin-α decreased VSMC migration and proliferation via reduced phosphorylation of Akt and mTOR. Conclusion: Our data indicate that salusin-α suppresses the development of atherosclerosis by inhibiting VSMC proliferation and migration through the Akt/mTOR pathway.


Sign in / Sign up

Export Citation Format

Share Document