scholarly journals Effects of Nopal Mucilage (Opuntia ficus-indica) as Plasticizer in the Fabrication of Laminated and Tubular Films of Extruded Acetylated Starches

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Caroline Andreuccetti ◽  
Tomás Galicia-García ◽  
Fernando Martínez-Bustos ◽  
Raimundo Ferreira Grosso ◽  
Rubén González-Núñez

Normal and acetylated rice and waxy maize starches with a blend of nopal mucilage (Opuntia ficus-indica) and glycerol were used for the preparation of laminated and tubular films by extrusion and blown extrusion, respectively. The composition of the formulation was 70% starch (normal or acetylated), 20% glycerol, and 10% nopal mucilage ( w / w ). The degrees of substitution (DS) for acetylated rice starch (0.94) and waxy maize starch (0.76) present high potential for use as a polymeric matrix in packing materials. The use of nopal mucilage can improve the processability of extruded and tubular films by favoring the increase of some mechanical and functional properties. The films elaborated with nopal mucilage and glycerol present a homogeneous relief without breaking, adhesiveness, and contraction once formed. The elongation values of acetylated waxy maize starch films (33%) were higher than those of rice acetylated films (17%), while the blown films presented a 30% decrease in tensile strength, compared to the laminated films. Acetylation generated more hydrophobic material for the rice starch sample, which can be evidenced by a decreased solubility of the laminated films. Films of both sources of acetylated starch showed a significant decrease in water vapor permeability and showed a plasticized starch disposition-type layer without unmelted starch granules.

2018 ◽  
Vol 105 ◽  
pp. 637-644 ◽  
Author(s):  
M.K.S. Monteiro ◽  
V.R.L. Oliveira ◽  
F.K.G. Santos ◽  
E.L. Barros Neto ◽  
R.H.L. Leite ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 506 ◽  
Author(s):  
Dulce C. González Sandoval ◽  
Brenda Luna Sosa ◽  
Guillermo Cristian Guadalupe Martínez-Ávila ◽  
Humberto Rodríguez Fuentes ◽  
Victor H. Avendaño Abarca ◽  
...  

The consumption of organic products has increased in recent years. One of the most important products in Mexico is nopal. Nopal’s content and properties make the formulation of edible films possible. In this study, we aimed to develop and characterize biodegradable edible films containing mucilage from Opuntia ficus-indica. The mucilage extraction yield, thickness, color, water vapor permeability, light transmission rate, film transparency, solubility, stability of dispersion, and puncture strength were measured. The use of mucilage from different cultivars affected the water vapor permeability (8.40 × 10−11 g·m−1·s−1·Pa−1 for cultivar Villanueva, 3.48 × 10−11 g·m−1·s−1·Pa−1 for Jalpa, and 1.63 × 10−11 g·m−1·s−1·Pa−1 for Copena F1). Jalpa provided the most soluble mucilage with the highest thickness (0.105 mm). Copena F1 provided the clearest film with the greatest transparency (3.81), the best yellowness index, and the highest resistance (4.44 N·mm−1). Furthermore, this film had the best light transmission rate (48.93%). The Copena F1 showed the best film formation solution viscosity. These results indicate that mucilage mixed with pectin is a potential source for the formulation of edible films.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 384
Author(s):  
Juan Tirado-Gallegos ◽  
Paul Zamudio-Flores ◽  
José Ornelas-Paz ◽  
Claudio Rios-Velasco ◽  
Guadalupe Olivas Orozco ◽  
...  

Apple starch films were obtained from apples harvested at 60, 70, 80 and 90 days after full bloom (DAFB). Mechanical properties and water vapor permeability (WVP) were evaluated. The apple starch films at 70 DAFB presented higher values in the variables of tensile strength (8.12 MPa), elastic modulus (3.10 MPa) and lower values of water vapor permeability (6.77 × 10−11 g m−1 s−1 Pa−1) than apple starch films from apples harvested at 60, 80 and 90 DAFB. Therefore, these films were chosen to continue the study incorporating ellagic acid (EA). The EA was added at three concentrations [0.02% (FILM-EA0.02%), 0.05% (FILM-EA0.05%) and 0.1% (FILM-EA0.1%) w/w] and compared with the apple starch films without EA (FILM-Control). The films were characterized by their physicochemical, optical, morphological and mechanical properties. Their thermal stability and antioxidant capacity were also evaluated. The FILM-Control and FILM-EA0.02% showed a uniform surface, while FILM-EA0.05% and FILM-EA0.1% showed a rough surface and insoluble EA particles. Compared to FILM-Control, EA modified the values of tensile strength, elasticity modulus and elongation at break. The antioxidant capacity increased as EA concentration did. EA incorporation allowed obtaining films with higher antioxidant capacity, capable of blocking UV light with better mechanical properties than film without EA.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


2013 ◽  
Vol 750-752 ◽  
pp. 1930-1933
Author(s):  
Jiang Ping Chang ◽  
Hong Li Li ◽  
Ying Jie Zhang ◽  
Guo Xian Zhou ◽  
Ming Long Yuan

The poly (lactide-co-trimethylene carbonate) copolymers are prepared by ring opening polymerization and catalyzed by SnOct and their films are prepared by blow molding. The 1HNMR study demonstrates that PLA-PTMC copolymers were successfully obtained and the graft way is A-B model. The water vapor permeability (WVP) of the films decreases with the increasing TMC content due to the formation of denser structure. The mechanical measurement reveals that the tensile strength of blown films has been declined with the increasing TMC content, but the elongation at break is improved and the tensile strength can be satisfied for the requirement of film product. Therefore, the copolymer film will be great prospect in the application of food and beverage packing.


2001 ◽  
Vol 49 (2) ◽  
pp. 131-145 ◽  
Author(s):  
M. Lundbäck ◽  
M. S. Hedenqvist ◽  
A. Jansson ◽  
A. Wirsén ◽  
A.-C. Albertsson ◽  
...  

2009 ◽  
Vol 52 (6) ◽  
pp. 1505-1512 ◽  
Author(s):  
Fábio Avelino Bublitz Ferreira ◽  
Maria Victória Eiras Grossmann ◽  
Suzana Mali ◽  
Fábio Yamashita ◽  
Lisandro Pavie Cardoso

The effect of monoglyceride on microstructural, barrier and mechanical properties of casted yam starch films were investigated in different relative humidities (RH) and compared with glycerol-starch films. A single screw extruder was used to produce the starch - monoglyceride complex before film production and this process was effective to inhibit the phase separation in films. The addition of the hydrophobic compound reduced hydrophobicity, transparency and water vapor permeability of films. This later value for starch-glycerol film (1.7 x 10-10 g Pa-1 s-1 m-1) was higher than starch (1.2 x 10-10 g Pa-1 s-1 m-1) and monoglyceride-starch films (1.0 x 10-10 g Pa-1 s-1 m-1). Films containing glycerol had higher relative crystallinity (B and V H) with a slight increase at higher RH values, while for monoglyceride films, the crystallinity was constant. Monoglyceride-starch films presented poor mechanical properties when compared to glycerol- starch ones but they presented a stable behavior under different relative humidities.


2020 ◽  
Vol 23 (2) ◽  
Author(s):  
Vanessa Soltes de Almeida ◽  
Bárbara Ruivo Válio Barretti ◽  
Vivian Cristina Ito ◽  
Lucca Malucelli ◽  
Marco Aurélio da Silva Carvalho Filho ◽  
...  

2009 ◽  
Vol 15 (2) ◽  
pp. 149-158 ◽  
Author(s):  
T. Bourtoom ◽  
M.S. Chinnan

This study investigated the effect of lipid types (oleic acid, palm oil, and margarine) and their concentrations (0, 10, 20, 30, 40, and 50wt%) on the water vapor permeability (WVP), tensile strength (TS), percentage of elongation at break (%E), and structure of emulsified rice starch-chitosan composite film. The influence of rice starch-chitosan composite film incorporated with lipids in controlling the moisture transfer in moisture-sensitive products was determined by wrapping a low aw-type cracker product in rice starch-chitosan composite film. TS and WVP of rice starch-chitosan composite film decreased with the addition of lipids, whereas %E increased in these films. Addition of lipids significantly raised film yellowness for composite films. The results showed that films added with oleic acid gave higher L*, b*, and chroma values but lower a* value than margarine and palm oil, respectively. The lower transparency of the films was noticed when a greater amount of lipid was incorporated (p < 0.05). Oleic acid-incorporated films provided the films with smoother surface and higher values of TS and %E but lower WVP than margarine and palm oil, respectively. Wrapping cracker samples in the rice starch-chitosan composite film incorporated with oleic acid could maintain the hardness and provide longer shelf life and lower moisture content than synthetic polyvinyl chloride film (PVC) and unwrapped (reference) crackers, respectively.


2007 ◽  
Vol 7 (11) ◽  
pp. 1206-1216 ◽  
Author(s):  
Jérémie Viguié ◽  
Sonia Molina-Boisseau ◽  
Alain Dufresne

Sign in / Sign up

Export Citation Format

Share Document