scholarly journals Gravitational Collapse and Singularity Removal in Rastall Theory

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ehsan Dorrani

In the present work, we study spherically symmetric gravitational collapse of a homogeneous fluid in the framework of Rastall gravity. Considering a nonlinear equation of state (EoS) for the fluid profiles, we search for a class of nonsingular collapse solutions and the possibility of singularity removal. We find that depending on the model parameters, the collapse scenario halts at a minimum value of the scale factor at which a bounce occurs. The collapse process then enters an expanding phase in the postbounce regime, and consequently the formation of a spacetime singularity is prevented. We also find that, in comparison to the singular case where the apparent horizon forms to cover the singularity, the formation of apparent horizon can be delayed allowing thus the bounce to be causally connected to the external universe. The nonsingular solutions we obtain satisfy the weak energy condition (WEC) which is crucial for physical validity of the model.

2019 ◽  
Vol 16 (11) ◽  
pp. 1950173
Author(s):  
Binod Chetry ◽  
Jibitesh Dutta ◽  
Ujjal Debnath ◽  
Wompherdeiki Khyllep

This paper deals with the study of the effect of Maxwell’s nonlinear electrodynamics (NLED) in the framework of Dvali–Gabadadze–Porrati (DGP) brane gravity for Friedmann–Robertson–Walker (FRW) Universe. Recently, the Hawking temperature and Bekenstein entropy have been modified for the validity of the thermodynamical laws at the event horizon. In this context, we test the validity of the generalized second law of thermodynamics (GSLT) at the apparent and event horizons. Here, the entropy of the horizon has been extracted for the following two cases: (i) by assuming the first law of thermodynamics (ii) by using modified entropy-area relation. In the case of apparent horizon, we consider the usual Hawking temperature. On the other hand, in the case of event horizon, we consider the modified Hawking temperature. Next, we discuss the geometrical parameters (deceleration, statefinder parameters and [Formula: see text] diagnostic) to explore the expansion of the accelerating Universe. From the general expression of GSLT, we find that for the apparent horizon, the GSLT always holds for any choice of model parameters in both the branches of the DGP model. However, the null energy condition must satisfy for the plausibility of GSLT at the event horizon. Finally, we use the recent observational data from Stern datasets, Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and Type Ia Supernovae (SNIa) observations to hold down the model parameters. Our analysis reveals that the DGP braneworld is free from classical instability issues and also cannot be ruled out by present thermodynamical and observational constraints.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050163 ◽  
Author(s):  
Ali Övgün ◽  
İzzet Sakallı ◽  
Joel Saavedra ◽  
Carlos Leiva

We study the shadow and energy emission rate of a spherically symmetric noncommutative black hole in Rastall gravity. Depending on the model parameters, the noncommutative black hole can reduce to the Schwarzschild black hole. Since the nonvanishing noncommutative parameter affects the formation of event horizon, the visibility of the resulting shadow depends on the noncommutative parameter in Rastall gravity. The obtained sectional shadows respect the unstable circular orbit condition, which is crucial for physical validity of the black hole image model.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Anna Nakonieczna ◽  
Łukasz Nakonieczny

AbstractThe objective of the paper was to examine gravitational evolutions in the Higgs-dark matter sector toy model. The real part of the Higgs doublet was modelled by a neutral scalar. Two dark matter candidates introduced were the dark photon and a charged complex scalar. Non-minimal couplings of both scalars to gravity were included. The coupling channels between the ordinary and dark matter sectors were kinetic mixing between the electromagnetic and dark U(1) fields and the Higgs portal coupling among the scalars. The structures of emerging singular spacetimes were either of Schwarzschild or Reissner–Nordström types. The non-minimal scalar–gravity couplings led to an appearance of timelike portions of apparent horizons where they transform from spacelike to null. The features of dynamical black holes were described as functions of the model parameters. The black holes formed later and their radii and masses were smaller as the mass parameter of the complex scalar increased. The dependencies on the coupling of the Higgs field to gravity exhibited extrema, which were a maximum for the time of the black holes formation and minima in the cases of their radii and masses. A set of quantities associated with an observer moving with the evolving matter was proposed. The energy density, radial pressure and pressure anisotropy within dynamical spacetimes get bigger as the singularity is approached. The increase is more considerable in the Reissner–Nordström spacetimes. The apparent horizon local temperature changes monotonically in the minimally coupled case and non-monotonically when non-minimal scalar–gravity couplings are involved.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650005 ◽  
Author(s):  
Alireza Allahyari ◽  
Javad T. Firouzjaee ◽  
Reza Mansouri

We study the time evolution of the Misner-Sharp mass and the apparent horizon for gravitational collapse of a massless scalar field in the [Formula: see text] spacetime for both cases of narrow and broad waves by numerically solving the Einstein’s equations coupled to a massless scalar field. This is done by relying on the full dynamics of the collapse including the concept of the dynamical horizon. It turns out that the Misner-Sharp mass is everywhere constant except for a rapid change across a thin shell defined by the density profile of the collapsing wave. By studying the evolution of the apparent horizon, indicating the formation of a black hole at different times we see how asymptotically an event horizon forms. The dependence of the thermalization time on the radius of the initial black hole event horizon is also studied.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.


2007 ◽  
Vol 22 (01) ◽  
pp. 65-74 ◽  
Author(s):  
RITUPARNO GOSWAMI ◽  
PANKAJ S. JOSHI

We construct and study here a class of collapsing scalar field models with a nonzero potential. The weak energy condition is satisfied by the collapsing configuration and it is shown that the end state of collapse could be either a black hole or a naked singularity. It is seen that physically it is the rate of collapse that governs these outcomes of the dynamical evolution. The implications for the cosmic censorship conjecture are discussed.


Regular static axisymmetric vacuum solutions of Einstein’s field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.


2020 ◽  
Vol 98 (4) ◽  
pp. 364-374
Author(s):  
Saeeda Zia ◽  
M. Farasat Shamir

In this paper, we present the cylindrically symmetric solutions in a well-known modified theory, namely f(R, G) gravity. After driving the complete system of field equations, six different families of exact solutions using a viable f(R, G) gravity model have been discussed. Moreover, we have investigated the well-known Levi–Civita solution in modified gravity for the model f(R, G) = R2 + αGn for some suitable values of model parameters n and α. Null energy conditions are also calculated for all the obtained solutions. Some regions are observed where the null energy condition is violated, indicating the existence of cylindrical wormholes.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850020 ◽  
Author(s):  
Hasrat Hussain Shah

In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), [Formula: see text], and Dark Energy (DE), [Formula: see text] in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) [Formula: see text] and [Formula: see text], [Formula: see text]. We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.


Sign in / Sign up

Export Citation Format

Share Document