scholarly journals Study on Vibration Damping Mechanism of Shoe Sole with Alternating Lattice Structure Using Vibration Level Difference

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chongning Wang ◽  
Xiaoying Liu ◽  
Yong Yue ◽  
Jiazan Huang ◽  
Xianwei Huang ◽  
...  

As one of the media of the ground and feet, the design of footwear products has lately received great attention, and the cushioning performance of the sole has become a key factor for the comfort and sportiness of the foot. In this paper, a new type of middle sole sports shoes with an alternating gradient lattice structure was proposed. The dynamic response of the structure was analyzed by ABAQUS software, and the model was validated by modal analysis. The effects of different kinds of alternating lattice and uniform lattice sole models on vibration isolation were analyzed by using the vibration level difference as the evaluation index of vibration characteristics. The analysis results are as follows: (a) We found that the mean of the vibration level difference of the alternating gradient structure is higher than that of the uniform lattice structure, which confirms the feasibility of the alternating gradient arrangement and its excellent buffering performance. (b) Two kinds of vibration stage drop values of the 24-series alternating lattice structure model are analyzed, and “C-G-X″ structure has the highest vibration stage drop value. In addition, the comprehensive analysis of the alternating gradient lattice structure of the soles shows that the four types of structures have good cushioning performance, and the C-series structure in the frequency range of 0–140 Hz vibration level difference value is higher than other series. The results show that the evaluation index of vibration level difference based on mechanical vibration characteristics can accurately analyze the response of different structure soles to vibration, which also provides a method for the future design of vibration reduction and exploration of the biomechanics of footwear.

2014 ◽  
Vol 590 ◽  
pp. 149-154 ◽  
Author(s):  
Xue Tao Weng ◽  
Rui Huo ◽  
Shu Ying Li ◽  
Cui Ping Liu

Problems of estimation of vibration isolation effectiveness are discussed based on vibratory power flow analysis, and a new insertion loss character — power flow insertion loss is proposed for evaluation of isolation efficiency. Spectra characteristics of the power flow insertion loss and their relationship with transmitted power flow and vibration level difference are investigated through numerical simulation. And in consideration of the inconvenience of practical testing of insertion loss and power flow, an attempt is made to set up numerical correspondence between power flow insertion loss and the current widely applied vibration level difference measurement, through theoretical analysis and experiments.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1737
Author(s):  
Milan Banić ◽  
Dušan Stamenković ◽  
Aleksandar Miltenović ◽  
Dragan Jovanović ◽  
Milan Tica

The selection of a rubber compound has a determining influence on the final characteristics of rubber-metal springs. Therefore, the correct selection of a rubber compound is a key factor for development of rubber-metal vibration isolation springs with required characteristics. The procedure for the selection of the rubber compound for vibration isolation of rubber-metal springs has been proposed, so that the rubber-metal elements have the necessary characteristics, especially in terms of deflection. The procedure is based on numerical simulation of spring deflection with Bergström-Boyce constitutive model in virtual experiment, with a goal to determine which parameters of the constitutive model will lead to spring required deflection. The procedure was verified by case study defined to select rubber compound for a rubber–metal spring used in railway engineering.


1990 ◽  
Vol 26 (15) ◽  
pp. 1159 ◽  
Author(s):  
S.A. Al-Chalabi ◽  
J. Mellis ◽  
M. Hollier ◽  
K.H. Cameron ◽  
R. Wyatt ◽  
...  

Low frequency passive towed array sonar is an essential component in a torpedo detection system for surface ships. Compact towed arrays are used for torpedo detection and they will be towed at higher towing speeds compared to conventional towed array sonars used for surveillance. Presence of non-acoustic noise in towed array sensors at higher towing speeds degrades torpedo detection capability at lower frequencies. High wavenumber mechanical vibrations are induced in the array by vortex shedding associated with hydrodynamic flow over the array body and cable scope. These vibrations are known to couple into the hydrophone array as nonacoustic noise sources and can impair acoustic detection performance, particularly in the forward end fire direction. Lengthy mechanical vibration isolation modules can isolate vibration induced noise in towed arrays, but this is not recommended in a towed array which is towed at high speeds as it will increase the drag and system complexity. An algorithm for decomposing acoustic and non-acoustic components of signals received at sensor level using well known frequency-wavenumber transform (F-K transform) is presented here. Frequency-wavenumber diagrams can be used for differentiating between acoustic and non-acoustic signals. An area of V shape is identified within the F-K spectrum where acoustic energy is confined. Energy outside this V will highlight non-acoustic energy. Enhanced simultaneous spatio-temporal and spatio-amplitude detection is possible with this algorithm. Performance of this algorithm is validated through simulation and experimental data.


2012 ◽  
Vol 184-185 ◽  
pp. 525-528 ◽  
Author(s):  
Hui Yan ◽  
Liang Chen ◽  
Hong Rui Ao ◽  
Hong Yuan Jiang

Transmissibility is the main performance evaluation index of Metal Rubber (MR) isolator, which can be got by sine sweep frequency test. At different temperature, the sine sweep frequency test is done with different structural parameter MR isolator. The influence that relative density and pre-deformation have on transmissibility and natural frequency when temperature changed is analyzed. The changing regularity of MR isolator’s transmissibility at different temperature is explored. Research results provide the basis for designing MR isolator.


Author(s):  
Hee-Dong Chae ◽  
Seung-bok Choi ◽  
Jong-Seok Oh

This paper proposes a new bed stage for patients in ambulance vehicle in order to improve ride quality in term of vibration control. The vibration of patient compartment in ambulance can cause a secondary damage to a patient and a difficulty for a doctor to perform emergency care. The bed stage is to solve vertical, rolling, and pitching vibration in patient compartment of ambulance. Four MR (magneto-rheological) dampers are equipped for vibration isolation of the stage. Firstly, a mathematical model of stage is derived followed by the measurement of vibration level of patient compartment of real ambulance vehicle. Then, the design parameters of bed stage is undertaken via computer simulation. Skyhook, PID and LQR controllers are used for vibration control and their control performances are compared.


2014 ◽  
Vol 487 ◽  
pp. 332-336
Author(s):  
Peng Cheng Sheng ◽  
Chun Lan Liang ◽  
Fei Wang ◽  
Zhi Yi Huo

The acceleration and force sensors are taken as the measurement parameter,vibration power flow analysis is conducted to the data collected using MATLAB software,the results show that validity of engine suspension vibration is intuitively judged using the power flow,it is a evaluation index,moreover,it is not only convenient measurement,but also the influence of phase difference between the measured parameters to vibration isolation effect is not needed consider.


Sign in / Sign up

Export Citation Format

Share Document