scholarly journals A New Algorithm for Privacy-Preserving Horizontally Partitioned Linear Programs

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Chengxue Zhang ◽  
Debin Kong ◽  
Peng Pan ◽  
Mingyuan Zhou

In a linear programming for horizontally partitioned data, the equality constraint matrix is divided into groups of rows. Each group of the matrix rows and the corresponding right-hand side vector are owned by different entities, and these entities are reluctant to disclose their own groups of rows or right-hand side vectors. To calculate the optimal solution for the linear programming in this case, Mangasarian used a random matrix of full rank with probability 1, but an event with probability 1 is not a certain event, so a random matrix of full rank with probability 1 does not certainly happen. In this way, the solution of the original linear programming is not equal to the solution of the secure linear programming. We used an invertible random matrix for this shortcoming. The invertible random matrix converted the original linear programming problem to a secure linear program problem. This secure linear programming will not reveal any of the privately held data.

2019 ◽  
Vol 2 (1) ◽  
pp. 69-76
Author(s):  
Adolf T Simatupang

This study aims to discuss a linear program problem where its constants can change, If a constant for a linear program problem is changed, then we don't need to count from the beginning again. Next, we will examine the properties of the objective function as a result of changes in these constants. In this discussion determine the non-negative "critical value" which provides the optimal solution to the problem of parametric linear programs. Searching for critical values in parametric linear programs is done by the matrix version method.


2021 ◽  
Author(s):  
Xiaocheng Li ◽  
Yinyu Ye

We study an online linear programming (OLP) problem under a random input model in which the columns of the constraint matrix along with the corresponding coefficients in the objective function are independently and identically drawn from an unknown distribution and revealed sequentially over time. Virtually all existing online algorithms were based on learning the dual optimal solutions/prices of the linear programs (LPs), and their analyses were focused on the aggregate objective value and solving the packing LP, where all coefficients in the constraint matrix and objective are nonnegative. However, two major open questions were as follows. (i) Does the set of LP optimal dual prices learned in the existing algorithms converge to those of the “offline” LP? (ii) Could the results be extended to general LP problems where the coefficients can be either positive or negative? We resolve these two questions by establishing convergence results for the dual prices under moderate regularity conditions for general LP problems. Specifically, we identify an equivalent form of the dual problem that relates the dual LP with a sample average approximation to a stochastic program. Furthermore, we propose a new type of OLP algorithm, action-history-dependent learning algorithm, which improves the previous algorithm performances by taking into account the past input data and the past decisions/actions. We derive an [Formula: see text] regret bound (under a locally strong convexity and smoothness condition) for the proposed algorithm, against the [Formula: see text] bound for typical dual-price learning algorithms, where n is the number of decision variables. Numerical experiments demonstrate the effectiveness of the proposed algorithm and the action-history-dependent design.


2010 ◽  
Vol 439-440 ◽  
pp. 710-714
Author(s):  
Li Wei

The linear programming based method are popular methods for learning from empirical data (observations, samples, examples, records). In this paper, an interval linear programming based method for regression problems is proposed. The explicit representation of the general optimal solution of regression problem is obtained in terms of a generalized inverse of the constraint matrix. This explicit solution has obvious theoretical (and possibly computational) advantages over the well-known iterative methods of linear programming.


2021 ◽  
Vol 2 ◽  
Author(s):  
Zhiping Qiu ◽  
Han Wu ◽  
Isaac Elishakoff ◽  
Dongliang Liu

Abstract This paper studies the data-based polyhedron model and its application in uncertain linear optimization of engineering structures, especially in the absence of information either on probabilistic properties or about membership functions in the fussy sets-based approach, in which situation it is more appropriate to quantify the uncertainties by convex polyhedra. Firstly, we introduce the uncertainty quantification method of the convex polyhedron approach and the model modification method by Chebyshev inequality. Secondly, the characteristics of the optimal solution of convex polyhedron linear programming are investigated. Then the vertex solution of convex polyhedron linear programming is presented and proven. Next, the application of convex polyhedron linear programming in the static load-bearing capacity problem is introduced. Finally, the effectiveness of the vertex solution is verified by an example of the plane truss bearing problem, and the efficiency is verified by a load-bearing problem of stiffened composite plates.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
D. Ya. Khusainov ◽  
J. Diblík ◽  
Z. Svoboda ◽  
Z. Šmarda

The present investigation deals with global instability of a generaln-dimensional system of ordinary differential equations with quadratic right-hand sides. The global instability of the zero solution in a given cone is proved by Chetaev's method, assuming that the matrix of linear terms has a simple positive eigenvalue and the remaining eigenvalues have negative real parts. The sufficient conditions for global instability obtained are formulated by inequalities involving norms and eigenvalues of auxiliary matrices. In the proof, a result is used on the positivity of a general third-degree polynomial in two variables to estimate the sign of the full derivative of an appropriate function in a cone.


2013 ◽  
Vol 21 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Ryan Bakker ◽  
Keith T. Poole

In this article, we show how to apply Bayesian methods to noisy ratio scale distances for both the classical similarities problem as well as the unfolding problem. Bayesian methods produce essentially the same point estimates as the classical methods, but are superior in that they provide more accurate measures of uncertainty in the data. Identification is nontrivial for this class of problems because a configuration of points that reproduces the distances is identified only up to a choice of origin, angles of rotation, and sign flips on the dimensions. We prove that fixing the origin and rotation is sufficient to identify a configuration in the sense that the corresponding maxima/minima are inflection points with full-rank Hessians. However, an unavoidable result is multiple posterior distributions that are mirror images of one another. This poses a problem for Markov chain Monte Carlo (MCMC) methods. The approach we take is to find the optimal solution using standard optimizers. The configuration of points from the optimizers is then used to isolate a single Bayesian posterior that can then be easily analyzed with standard MCMC methods.


2018 ◽  
Vol 52 (3) ◽  
pp. 955-979 ◽  
Author(s):  
Ali Ebrahimnejad

An efficient method to handle the uncertain parameters of a linear programming (LP) problem is to express the uncertain parameters by fuzzy numbers which are more realistic, and create a conceptual and theoretical framework for dealing with imprecision and vagueness. The fuzzy LP (FLP) models in the literature generally either incorporate the imprecisions related to the coefficients of the objective function, the values of the right-hand side, and/or the elements of the coefficient matrix. The aim of this article is to introduce a formulation of FLP problems involving interval-valued trapezoidal fuzzy numbers for the decision variables and the right-hand-side of the constraints. We propose a new method for solving this kind of FLP problems based on comparison of interval-valued fuzzy numbers by the help of signed distance ranking. To do this, we first define an auxiliary problem, having only interval-valued trapezoidal fuzzy cost coefficients, and then study the relationships between these problems leading to a solution for the primary problem. It is demonstrated that study of LP problems with interval-valued trapezoidal fuzzy variables gives rise to the same expected results as those obtained for LP with trapezoidal fuzzy variables.


2016 ◽  
Vol 33 (06) ◽  
pp. 1650047 ◽  
Author(s):  
Sanjiv Kumar ◽  
Ritika Chopra ◽  
Ratnesh R. Saxena

The aim of this paper is to develop an effective method for solving matrix game with payoffs of trapezoidal fuzzy numbers (TrFNs). The method always assures that players’ gain-floor and loss-ceiling have a common TrFN-type fuzzy value and hereby any matrix game with payoffs of TrFNs has a TrFN-type fuzzy value. The matrix game is first converted to a fuzzy linear programming problem, which is converted to three different optimization problems, which are then solved to get the optimum value of the game. The proposed method has an edge over other method as this focuses only on matrix games with payoff element as symmetric trapezoidal fuzzy number, which might not always be the case. A numerical example is given to illustrate the method.


Sign in / Sign up

Export Citation Format

Share Document