scholarly journals Mobility-Aware Routing Algorithm for Mobile Ad Hoc Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chalew Zeynu Sirmollo ◽  
Mekuanint Agegnehu Bitew

Mobile ad hoc network (MANET) is a group of wireless mobile nodes that create a temporary network without the help of any central administration or standard support services. Mobility of nodes determines the overall performance of MANET networks. High mobility of nodes causes frequent changes in the network topology, and this leads to link breakage and increases reinitiating of the route discovery process. MANETs commonly use broadcasting techniques for route discovery process. However, it can cause redundant rebroadcasts, packet collisions, and channel contention. The main objective of this paper is to design and develop the mobility-aware routing algorithm (MARA) to enhance the performance of the routing protocol in MANETs. The proposed scheme allows mobile nodes to rebroadcast or discard received broadcasted messages. The decision is based on the combination of node speed, distance between nodes, and residual energy of nodes. These parameters are considered both in route request and route reply process to reduce the chance of link breakage and broadcast storm problems. The proposed algorithm has been evaluated based on the performance metrics: packet delivery ratio, average end-to-end delay, throughput, and routing overhead. We have used network simulator NS-2 V-2.35. The simulation results revealed that MARA outperforms ad hoc on-demand distance vector (AODV), mobility and direction aware (MAD), and mobility and energy-aware (MAE) routing protocols.

Author(s):  
DWEEPNA GARG ◽  
PARTH GOHIL

A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using centralized access points, infrastructure, or centralized administration. Routing means the act of moving information across an internet work from a source to a destination. The biggest challenge in this kind of networks is to find a path between the communication end points, what is aggravated through the node mobility. In this paper we present a new routing algorithm for mobile, multi-hop ad-hoc networks. The protocol is based on swarm intelligence. Ant colony algorithms are a subset of swarm intelligence and consider the ability of simple ants to solve complex problems by cooperation. The introduced routing protocol is well adaptive, efficient and scalable. The main goal in the design of the protocol is to reduce the overhead for routing. We refer to the protocol as the Ant Colony Optimization Routing (ACOR).


2019 ◽  
Vol 16 (9) ◽  
pp. 3906-3911
Author(s):  
Karan Singh ◽  
Rajeev Gupta

Recent progression in the field of information and communication cause increase of packet count over the World Wide Web network. These communicated packets should deliver on time from origin node to destination node using a reliable and shortest route. In this way routing plays an important part in dispatching the packets to destination form the source. This routing becomes more crucial when packets delivery is done in independent mobile nodes which dynamically form a temporary network. This network named as Mobile Ad-Hoc Network and therefore it is said to be particular reason-specific, self-ruling and dynamic. In this paper we analyzed 3 protocols and for a quality of service (i.e., Packet Delivery Ratio) and achieved comparative study of various protocols of routing with respect to Operation of protocols, Route maintenance, Routing table, Route, Route selection, Routing structure, Routing Approaches, Protocol types, Merits and Demerits.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3657 ◽  
Author(s):  
Dong Yang ◽  
Hongxing Xia ◽  
Erfei Xu ◽  
Dongliang Jing ◽  
Hailin Zhang

The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization (IEMACO) routing algorithm. Firstly, the algorithm accelerates the convergence speed of the routing algorithm and reduces the number of route discovery packets by introducing an offset coefficient of the transition probability. Then, based on the energy consumption rate, the remaining lifetime of nodes (RLTn) is considered. The position and velocity information predicts the remaining lifetime of the link (RLTl). The algorithm combines RLTn and RLTl to design the pheromone generation method, which selects the better quality path according to the transition probability to ensure continuous data transmission. As a result, the energy consumption in the network is balanced. The simulation results show that compared to the Ad Hoc on-demand multipath distance vector (AOMDV) algorithm with multipath routing and the Ant Hoc Max-Min-Path (AntHocMMP) algorithm in consideration of node energy consumption and mobility, the IEMACO algorithm can reduce the frequency of route discovery and has lower end-to-end delay as well as packet loss rate especially when nodes move, and can extend the network lifetime.


Author(s):  
Ajay Vyas ◽  
Margam Suthar

Mobility models are used to evaluated the network protocols of the ad hoc network using the simulation. The random waypoint model is a model for mobility which is usually used for performance evaluation of ad-hoc mobile network. Mobile nodes have the dynamic mobility in the ad hoc network so the mobility model plays an important role to evaluate the protocol performance.In this article, we developed modify random waypoint mobility (MRWM) model based on random waypoint for the mobile ad hoc network. In this article, the comparative analysis of modifying random waypoint mobility and random waypoint model on the ad hoc On-Demand Distance Vector (AODV) routing protocol has been done for large wireless ad hoc network (100 nodes) with the random mobile environment for the 1800s simulation time. To enhance the confidence on the protocol widespread simulations were accomplished under heavy traffic (i.e. 80 nodes) condition. The proposed model protocol has been investigated with the performance metrics: throughput; packet delivery ratio; packet dropping ratio; the end to end delay and normalized routing overhead. The obtained results revealed that proposed modify random waypoint mobility model reduces the mobility as compared to the random waypoint mobility model and it is trace is more realist.


Mobile Ad-hoc Network (MANET) is a collection of self sustaining mobile nodes which are connected through many wi-fi links to form a temporary communication for sharing information between the users. Mobile nodes behave as a host as well as router. As nodes in MANET posse’s mobility in traits frequently leads to irregular link between the nodes. Link failure directs a significant routing overhead during high mobility and also maintaining all the information associated with nodes and routing paths are considered as an extra overhead on the table. In order to overcome these issues, the routing algorithm to eliminate stare routed in routing cache. The neighbor degree centrality table is introduced to recognize the valuable nodes, using the valuable nodes the routes are discovered and link failure information are disseminated across the network wide. The results and findings show that the elimination of stale routes leads to significant reduction in routing overhead which in turn reduces the route error propagation delay


Author(s):  
Baolin Sun ◽  
Chao Gui ◽  
Qifei Zhang ◽  
Hua Chen

A mobile ad hoc network (MANET) consists of a set of mobile hosts that can communicate with each other without the assistance of base stations. Due to the dynamic nature of the network topology and restricted resources, quality of service (QoS) and multicast routing in MANET are challenging tasks which attract the interests of many people. In this paper, we present a fuzzy controller based QoS routing algorithm with a multiclass scheme (FQRA) in mobile ad hoc networks. The performance of this scheduler is studied using NS2 (Network Simulator version 2) and evaluated in terms of quantitative measures such as packet delivery ratio, path success ratio and average end-to-end delay. Simulations show that the approach is efficient, promising and applicable in ad hoc networks.


Author(s):  
Adam Wong Yoon Khang ◽  
Mohamed Elshaikh Elobaid ◽  
Arnidza Ramli ◽  
Nadiatulhuda Zulkifli ◽  
Sevia Mahdaliza Idrus

Resource consumption in access network will continue to draw attention due to the increasing trend of mobile user device and application. This chapter will address the issue of resource utilization efficiency via alternate specific method known as Taguchi offline optimization-based on mobile ad hoc network (MANET) to be applied into cooperating multiple layers framework of deploy over passive optical network (PON) called the last mile mobile hybrid optical wireless access network (LMMHOWAN). Adhering to this method, the chapter is also to propose the design of experiment simulation model using OMNeT++ software and its impact is investigated on the identified performance metrics like the end-to-end delay, packet delivery ratio (PDR), network capacity, packet loss probability (PLP), and energy consumption. Simulation result shows that the heterogeneous optical wireless network under the influence of random mobile connection can perform better with the optimized front-end wireless ad hoc.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1409 ◽  
Author(s):  
Mohammed Ahmed Jubair ◽  
Salama A. Mostafa ◽  
Ravie Chandren Muniyandi ◽  
Hairulnizam Mahdin ◽  
Aida Mustapha ◽  
...  

Mobile ad hoc network (MANET) can be described as a group of wireless mobile nodes that form a temporary dynamic and independent infrastructure network or a central administration facility. High energy consumption is one of the main problems associated with the MANET technology. The wireless mobile nodes used in this process rely on batteries because the network does not have a steady power supply. Thus, the rapid battery drain reduces the lifespan of the network. In this paper, a new Bat Optimized Link State Routing (BOLSR) protocol is proposed to improve the energy usage of the Optimized Link State Routing (OLSR) protocol in the MANET. The symmetry between OLSR of MANET and Bat Algorithm (BA) is that both of them use the same mechanism for finding the path via sending and receiving specific signals. This symmetry resulted in the BOLSR protocol that determines the optimized path from a source node to a destination node according to the energy dynamics of the nodes. The BOLSR protocol is implemented in a MANET simulation by using MATLAB toolbox. Different scenarios are tested to compare the BOLSR protocol with the Cellular Automata African Buffalo Optimization (CAABO), Energy-Based OLSR (EBOLSR), and the standard OLSR. The performance metric consists of routing overhead ratios, energy consumption, and end-to-end delay which is applied to evaluate the performance of the routing protocols. The results of the tests reveal that the BOLSR protocol reduces the energy consumption and increases the lifespan of the network, compared with the CAABO, EBOLSR, and OLSR.


2013 ◽  
Vol 11 (10) ◽  
pp. 3065-3070
Author(s):  
Roopali Garg ◽  
Guneet Kaur

Mobile ad hoc network is an assembly of mobile nodes with no centralized server. Due to mobility of nodes and decentralized network it is difficult to maintain the quality of service (QoS) in routing the packets from source to destination.  QoS can be defined in terms of various metrics like delay, bandwidth, packet loss, routing overhead, jitter. Routing can be unicast, multicast or multipath.  This paper presents the description about the QoS multipath routing algorithm.


2020 ◽  
Vol 21 (1) ◽  
pp. 137-145
Author(s):  
D Rajalakshmi ◽  
K Meena

The security in a mobile ad hoc networks is more vulnerable and susceptible to the environment, because in this network no centralized environment for monitoring individual nodes activity during communication. The intruders are hacked the networks either locally and globally. Now a day’s mobile ad hoc network is an emerging area of research due to its unique characteristics. It’s more vulnerable to detect malicious activities, and error prone in nature due to their dynamic topology configuration. Based on their difficulties of intrusion detection system, in this paper proposed a novel approach for mobile ad hoc network is Fuzzy Based Intrusion Detection (FBID) protocol, to identify, analyze and detect a malicious node in different circumstances. This protocol it improves the efficiency of the system and does not degrade the system performance in real time.This FBID system is more efficient and the performance is compared with AODV, Fuzzy Cognitive Mapping with the following performance metrics: Throughput, Packet Delivery Ratio, Packets Dropped, Routing overhead, Propagation delay and shortest path for delivering packets from one node to another node. The System is robust. It produces the crisp output to the benefit of end users. It provides an integrated solution capable of detecting the majority of security attacks occurring in MANETs.


Sign in / Sign up

Export Citation Format

Share Document