scholarly journals General Control of Amino Acid Synthesis 5-Like 1-Mediated Acetylation of Manganese Superoxide Dismutase Regulates Oxidative Stress in Diabetic Kidney Disease

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tingting Lv ◽  
Yao Lu ◽  
Yi Liu ◽  
Hong Feng ◽  
Chensheng Li ◽  
...  

Diabetic kidney disease (DKD) is the major cause of end-stage renal disease (ESRD). In the past few decades, there has been a large amount of evidence to highlight the pivotal role of oxidative stress in the development and progression of DKD. However, the detailed molecular mechanisms are not fully elucidated. A new sight has been established that the mitochondrial acetyltransferase GCN5L1 participates in cellular redox homeostasis maintenance in DKD. Firstly, we found that the expression of GCN5L1 is significantly elevated both in human and mouse kidney tissues with DKD and in hyperglycemic renal tubular epithelial cells (TECs), while deletion of GCN5L1 could effectively ameliorate oxidative stress-induced renal injury in DKD. Furthermore, deletion of GCN5L1 could reduce MnSOD acetylation on lysine 68 and activate its activity, thereby scavenging excessive ROS and relieving oxidative stress-induced renal inflammation and fibrosis. In general, GCN5L1-mediated acetylation of MnSOD exacerbated oxidative stress-induced renal injury, suggesting that GCN5L1 might be a potential intervention target in DKD.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1143
Author(s):  
Midori Sakashita ◽  
Tetsuhiro Tanaka ◽  
Reiko Inagi

Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease, and it is crucial to understand the pathophysiology of DKD. The control of blood glucose levels by various glucose-lowering drugs, the common use of inhibitors of the renin–angiotensin system, and the aging of patients with diabetes can alter the disease course of DKD. Moreover, metabolic changes and associated atherosclerosis play a major role in the etiology of DKD. The pathophysiology of DKD is largely attributed to the disruption of various cellular stress responses due to metabolic changes, especially an increase in oxidative stress. Therefore, many antioxidants have been studied as therapeutic agents. Recently, it has been found that NRF2, a master regulator of oxidative stress, plays a major role in the pathogenesis of DKD and bardoxolone methyl, an activator of NRF2, has attracted attention as a drug that increases the estimated glomerular filtration rate in patients with DKD. This review outlines the altered stress responses of cellular organelles in DKD, their involvement in the pathogenesis of DKD, and discusses strategies for developing therapeutic agents, especially bardoxolone methyl.


2018 ◽  
Vol 43 (2) ◽  
pp. e12727 ◽  
Author(s):  
Xiaohong Wang ◽  
Aiqiong Qin ◽  
Fang Xiao ◽  
Opeyemi J. Olatunji ◽  
Shuyuan Zhang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yu Ning Liu ◽  
Jingwei Zhou ◽  
Tingting Li ◽  
Jing Wu ◽  
Shu Hua Xie ◽  
...  

The hypoalbuminuric effect of sulodexide (SDX) on diabetic kidney disease (DKD) was suggested by some clinical trials but was denied by the Collaborative Study Group. In this study, the diabetic rats were treated with SDX either from week 0 to 24 or from week 13 to 24. We found that 24-week treatment significantly decreased the urinary protein and HAVCR1 excretion, inhibited the interstitial expansion, and downregulated the renal cell apoptosis and interstitial fibrosis. Renoprotection was also associated with a reduction in renocortical/urinary oxidative activity and the normalization of renal klotho expression. However, all of these actions were not observed when SDX was administered only at the late stage of diabetic nephropathy (from week 13 to 24). In vitro, advanced glycation end products (AGEs) dose-dependently enhanced the oxidative activity but lowered the klotho expression in cultured proximal tubule epithelial cells (PTECs). Also, H2O2 could downregulate the expression of klotho in a dose-dependent manner. However, overexpression of klotho reduced the HAVCR1 production and the cellular apoptosis level induced by AGEs or H2O2. Our study suggests that SDX may prevent the progression of DKD at the early stage by upregulating renal klotho expression, which inhibits the tubulointerstitial injury induced by oxidative stress.


Diabetes ◽  
2021 ◽  
pp. db210316
Author(s):  
Nehaben A. Gujarati ◽  
Alexandra R. Leonardo ◽  
Jessica M. Vasquez ◽  
Yiqing Guo ◽  
Bismark O. Frimpong ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2020 ◽  
Vol 12 (554) ◽  
pp. eaba3613 ◽  
Author(s):  
Yi Lu ◽  
Yongzhan Sun ◽  
Zhiheng Liu ◽  
Yumei Lu ◽  
Xu Zhu ◽  
...  

Oxidative stress is emerging as a crucial contributor to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), but the molecular mechanisms underlying the disturbed redox homeostasis in cystic cells remain elusive. Here, we identified the impaired activity of the NRF2 (nuclear factor erythroid 2–related factor 2) antioxidant pathway as a driver of oxidative damage and ADPKD progression. Using a quantitative proteomic approach, together with biochemical analyses, we found that increased degradation of NRF2 protein suppressed the NRF2 antioxidant pathway in ADPKD mouse kidneys. In a cohort of patients with ADPKD, reactive oxygen species (ROS) frequently accumulated, and their production correlated negatively with NRF2 abundance and positively with disease severity. In an orthologous ADPKD mouse model, genetic deletion of Nrf2 further increased ROS generation and promoted cyst growth, whereas pharmacological induction of NRF2 reduced ROS production and slowed cystogenesis and disease progression. Mechanistically, pharmacological induction of NRF2 remodeled enhancer landscapes and activated NRF2-bound enhancer-associated genes in ADPKD cells. The activation domain of NRF2 formed phase-separated condensates with MEDIATOR complex subunit MED16 in vitro, and optimal Mediator recruitment to genomic loci depended on NRF2 in vivo. Together, these findings indicate that NRF2 remodels enhancer landscapes and activates its target genes through a phase separation mechanism and that activation of NRF2 represents a promising strategy for restoring redox homeostasis and combatting ADPKD.


2020 ◽  
Vol 500 ◽  
pp. 110628 ◽  
Author(s):  
Huiwen Ren ◽  
Ying Shao ◽  
Can Wu ◽  
Xiaoyu Ma ◽  
Chuan Lv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document