scholarly journals Coupling Effects of Yaw Damper and Wheel-Rail Contact on Ride Quality of Railway Vehicle

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hai Zhang ◽  
Xiangrui Ran ◽  
Xiugang Wang ◽  
Fengtao Lin ◽  
Qi Jiang

The ride quality of the railway vehicle is not only affected by the wheel-rail contact geometry but also by the yaw damper. In order to explore this variation law, an equivalent parameter model of the yaw damper was established based on the internal characteristics of the yaw damper, which is both accurate and efficient. Then, considering the influence of wheel wear and wheel-rail contact geometry, ride quality of the railway vehicle under different parameters of yaw damper and wheel-rail contact parameters was analysed. The results show that the wheel-rail contact points are scattered on the wheel profile after the wheel wears out, and the equivalent conicity also tends to increase with the increasing operating mileage. The distribution of ride quality space is sensitive to the change of equivalent conicity. In the low equivalent conicity area, the expansion rate of excellent ride quality space is faster. In the high equivalent conicity area, the expansion rate of qualified ride quality space is faster. Appropriate additional stiffness which is oil stiffness in parallel with structural damping in the equivalent parameter model of the yaw damper can improve the vehicle ride quality. The lateral ride quality is influenced obviously with the condition of the damping of the yaw damper being less than 440 kN·s·m−1. Properly reducing the joint stiffness of the yaw damper could reduce the influence of characteristic parameters of the yaw damper and equivalent conicity of the wheel-rail contact on vehicle lateral ride quality. The optimized characteristic parameters of the yaw damper are used in the actual vehicle test, and the ride quality is effectively improved.

Author(s):  
Hwan-Choong Kim ◽  
Yu-Jeong Shin ◽  
Wonhee You ◽  
Kyu Chul Jung ◽  
Jong-Seok Oh ◽  
...  

This work presents experimental assessment of the improvements to the horizontal ride quality of a railway vehicle equipped with a semi-active magneto-rheological (MR) suspension system. The assessment includes the development of a mathematical model and magnetic circuit analysis of the MR damper, the design and manufacture of MR damper, and field test on the railway. After evaluating the field-dependent damping force characteristics, the conventional passive dampers of the operational railway vehicle are replaced with the MR dampers to evaluate horizontal dynamic characteristics that directly indicates the ride quality of the railway vehicle. Various sensors are installed in the vehicle and a skyhook controller with semi-active condition is implemented to produce an appropriate input current for the generation of the desired damping force. Three periods of testing are undertaken on the railway bridge at 120 km/h and the measured data of acceleration level are recoded and presented. It is demonstrated from the measured results that the vibration can be effectively controlled by the proposed semi-active MR suspension system associated with the skyhook controller. Finally, from the vibration control responses the horizontal ride quality of railway vehicle is evaluated and presented in frequency domain.


2013 ◽  
Vol 420 ◽  
pp. 9-15 ◽  
Author(s):  
Dao Gong ◽  
Wen Jing Sun ◽  
Jin Song Zhou

A refined non-linear air spring model of railway vehicle model is established in this paper and the influences of different air spring failures on ride quality are studied. Results show that the orifice failure makes the air spring loses damping characteristics and deteriorates the vehicle ride quality; The failure of levelling valve has little influence on the ride quality when vehicle running on straight lines; The fracture of air spring diaphragm results in a sudden release of air, and car body secondary support disappears rapidly, excessive wheel unloading will happen and which can easily lead to derailment. In addition, the longer the leakage process, the less the influence on vehicle safety.


2014 ◽  
Vol 663 ◽  
pp. 141-145
Author(s):  
Mohd Hanif Harun ◽  
W.Mohd Zailimi Wan Abdullah ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Khisbullah Hudha

This paper is aimed to show the improvement of ride quality of railway vehicle with semi-active suspension systems. The dynamics of nine degrees-of-freedom (9-DOF) railway vehicle model is developed consists of a vehicle body, two bogies and four wheel-set. The disturbance considered is track irregularity which is modelled as a sine wave. The control algorithm for the semi-active suspension system is developed based on Stability Augmentation System (SAS) integrated with skyhook controller to reduce the effect of track disturbance. The performances of passive and semi-active suspension are compared by simulation using MATLAB-SIMULINK software. The results of the study show that the proposed controller is able to significantly improve ride quality of railway vehicle body. It is also noted that the additional ride control loop which is skyhook control is able to further improve the performance of SAS controller for the system.


2006 ◽  
Vol 22 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Y.-T. Fan ◽  
W.-F. Wu

AbstractA rather complete dynamic model with special emphases on nonlinear conicity and creep force and in consideration of random irregularity of rail profile is proposed to simulate the response and investigate the ride quality of railway vehicles. The CP341 vehicle that will soon be used in Taipei Rapid Transit System is considered in particular as the studied role model. Some of the field test data carried out for this type of vehicle are revealed as well and used for the verification of the proposed model. Both simulation and test results show that the resonant frequency of the studied vehicle is in the range of 0.6∼1 Hz, and the one-third octave root-mean-square acceleration curves of the vehicle in all studied cases meet the ride quality criteria set for the mass rapid transit vehicle systems. It is observed that the secondary suspension of the vehicle has the low frequency filtering property and the primary suspension has high frequency characteristics. A poorer ride quality in vertical direction rather than in lateral direction is also confirmed in the study. It is concluded that the proposed model can be used to simulate the dynamic response and evaluate the ride quality of any railway vehicle.


Author(s):  
Y K Lau ◽  
W H Liao

This article aims at designing a magnetorheological (MR) fluid damper that is suitable for a semi-active train suspension system in order to improve its ride quality. A double-ended MR damper is designed, fabricated, and tested. Simulation is carried out by integrating the MR damper model in the secondary suspension of a full-scale railway vehicle model. The feasibility and effectiveness of the semi-active train suspension system with the developed MR dampers are investigated by comparing the controlled performances of the MR suspension system with different passive suspension systems. The results show that the semi-active suspension with the developed MR dampers can substantially improve the ride quality of the passengers.


2010 ◽  
Vol 129-131 ◽  
pp. 1191-1195
Author(s):  
Yan Lou

By data mining from 3DFEM simulation and Rough Set Theory (RST), it was performed that the extrusion process and die structures effect on the quality of AZ80 magnesium extrudate. The weights of the effect can be obtained. The results show that the effect of the billet temperature on the product quality is dominate, and its average weight is 0.27. The second important parameter is the ram speed and its average weight is 0.22. In addition, it was also found that the effect of the die characteristic parameters on the extrudate is insignificant.


2021 ◽  
Vol 3 (144) ◽  
pp. 116-121
Author(s):  
Nikita A. Pen’kov ◽  
◽  
Oleg A. Sidorkin ◽  
Sergey Yu. Zhachkin ◽  
Anatoliy I. Zavrazhnov ◽  
...  

One of the most common reasons for the failure of hydraulic drive systems for agricultural machinery is the working fluid leak in the contact points of the rubbing surfaces of hydraulic blocks. The application of composite coatings based on chromium on the contacting surfaces allows you to restore the defect in the shape of the part caused by wear, as well as reduce the friction coefficient at the contact points, which positively affects the wear resistance of the part. (Research purpose) The research purpose is in developing technologies for restoring parts of agricultural machinery with predetermined operational properties. (Materials and methods) A servo valve, widely used in various hydraulic drive systems, was used as an experimental sample. Its working surface was restored with a composite coating applied by electroplating to increase the wear resistance of the servo valve. (Results and discussion) Authors conducted a series of direct measurements under the same conditions. The article presents the de-pendence of the microhardness on the parameters of the electrolysis mode and the thickness of the applied coating using the method of least squares. The nature of changes in microhardness and residual stresses was evaluated to determine the quality of the coatings. The article presents the dependences of these indicators on various control parameters (current density, temperature, tool pressure). The equations of the regression of the main qualitative and accuracy characteristics of the parts were deter-mined using the apparatus of the theory of experimental planning. (Conclusions) The article presents the method for predicting coatings of a given quality, taking into ac-count the influence of the current density and the temperature of the electrolyte during electrolysis on the nature of the precipitation obtained. The influence of the tool pressure on the depth of deformation of the formed layers was estimated. This approach allows us to evaluate the nature of the stress distribution in the formed coating and the quality of the restored parts.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


Sign in / Sign up

Export Citation Format

Share Document