scholarly journals Flexural Behaviour of RC Beams with a Circular Opening at the Flexural Zone and Shear Zone Strengthened Using Steel Plates

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
J. Branesh Robert ◽  
R. Angeline Prabhavathy ◽  
P. S. Joanna ◽  
S. Christopher Ezhil Singh ◽  
Sivaraj Murugan ◽  
...  

In this paper, an investigation on the behaviour of RC beams with circular openings in the flexural zone and shear zone strengthened using steel plates is presented. Totally seven beams were cast: a control beam, one beam with a circular opening of size of one-third the depth of the beam (100 mmϕ) in the flexural zone, one beam with opening strengthened using the steel plate, one beam with a circular opening of size of 100 mmϕ in the shear zone, one beam with an opening in the shear zone strengthened using the steel plate, one beam with two circular openings of size of 100 mmϕ in the shear zone, and another beam with two openings in the shear zone strengthened using the steel plate. The experiments were conducted in a loading frame of 400 kN capacity. The beams were subjected to two-point loading. The ultimate load carrying capacity reduced marginally by 1.78% and 2.8% compared to that of the control beam when a circular opening of 100 mmϕ was provided in the flexural zone and shear zone, respectively, and when the opening was strengthened with steel plates, it reduced by 3.04% and 25%, respectively, but the ductility increased when steel plates were provided. Beams with an opening of size of one-third the depth of the beam (100 mmϕ) in the flexural zone strengthened with the steel plate can be provided, as the load carrying capacity is only marginally reduced compared to the control beam, and the ductility is more when compared with beams with unstrengthened openings.

2018 ◽  
Vol 23 (2) ◽  
pp. 31-48
Author(s):  
Ahmed Ali AL-Dhabyani ◽  
Abdulwahab AL-Ansi

In the modern building construction, openings in beams are necessary to accommodate several service pipes and ducts. Due to these openings, high stress concentration occurs at its edges. Local cracks also appear around the openings as a result of the reduction in the beam stiffness, the load carrying capacity and the shear capacity. There are many studies which were conducted to develop and test different strengthening methods for the beams opining to increase the ultimate load capacity of the beams. However, from a practical point of view, it is better to have one strengthening method having the same specifications to be used in both; shear and flexural zones for circular opining beams in buildings. In spite of the prior studies, no study has addressed this issue; therefore, there is a need to study such a case. In this paper, an analytical study was conducted to investigate the behavior of the reinforced concrete (RC) beams with circular openings in flexural and shear zones strengthened by steel plates. A 3D FE modeling (ABAQUS 6.12) software was used to simulate five different specimens of RC beams. The study results showed that when the openings were strengthened by steel plates, the ultimate load carrying capacity increased, but the deflection was decreased when compared to the openings without strengthening. In addition, the model reliability was verified via good agreements between the experimental and numerical results.


Author(s):  
A. Hamoda ◽  
A. Basha ◽  
S. Fayed ◽  
K. Sennah

AbstractThis paper investigates numerically and experimentally the performance of reinforced concrete (RC) beam with unequal depths subjected to combined bending and shear. Such beams can geometrically be considered for unleveled reinforced concrete (RC) floor slab-beam system. However, it may generate critical disturbances in stress flow at the re-entrant corner (i.e. location of drop in beam depth). This research investigates the use of shear reinforcement and geometric properties to enhance cracking characteristics, yielding, ultimate load-carrying capacity, and exhibiting ductile failure mode. Ten reinforced concrete (RC) beams were constructed and tested experimentally considering the following key parameters: recess length, depth of smaller beam nib, and amount and layout of shear reinforcement at re-entrant corner. Finite element analysis (FEA) with material non-linearity was conducted in two RC beams that were tested experimentally to validate the computer modelling. The FEA models were then extended to conduct a parametric study to investigate the influence of geometric parameters (beam shape and width) and amount and arrangement of shear reinforcement on the structural response. Results confirmed that geometric properties and ratio of shear reinforcement at the re-entrant region significantly affect the behavior of reinforced concrete beam with unequal depths in terms of first cracking, yielding level, ultimate load carrying capacity and mode of failure.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 306
Author(s):  
Qudhan Shaik ◽  
P Polu Raju

Due to lateral forces acting on the structure, stresses are generated in the beam which causes beam failure. To overcome those stresses in the existing structures, retrofitting is one of the techniques to increase the lateral strength. In this study, an experimental investigation was done on RC beams to check the shear behavior by comparing control RC beams with strengthened RC beams. To observe the shear behavior considered RC Beams were made weak in shear and then Retrofitted. Two sets of beams were considered, out of which, set-1 consists of three control specimens with shear reinforcement of 100%, 50%, and 30%. Set-2 consists of three retrofitted specimens with GFRP Strips with shear reinforcement of 100%, 50%, and 30%. GFRP strips were provided around the beam with different spacing. The results concluded that the retrofitted specimens have more load carrying capacity compared to control specimens. Thus, the retrofitting is a feasible solution to overcome the stresses developed in the structure. The study also involves the behavior of shear having several GFRP layers and orientation of ultimate load carrying capacity, failure mode and crack pattern of the beam are also investigated.  


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3468
Author(s):  
Zbigniew Kolakowski ◽  
Andrzej Teter

The phenomena that occur during compression of hybrid thin-walled columns with open cross-sections in the elastic range are discussed. Nonlinear buckling problems were solved within Koiter’s approximation theory. A multimodal approach was assumed to investigate an effect of symmetrical and anti-symmetrical buckling modes on the ultimate load-carrying capacity. Detailed simulations were carried out for freely supported columns with a C-section and a top-hat type section of medium lengths. The columns under analysis were made of two layers of isotropic materials characterized by various mechanical properties. The results attained were verified with the finite element method (FEM). The boundary conditions applied in the FEM allowed us to confirm the eigensolutions obtained within Koiter’s theory with very high accuracy. Nonlinear solutions comply within these two approaches for low and medium overloads. To trace the correctness of the solutions, the Riks algorithm, which allows for investigating unsteady paths, was used in the FEM. The results for the ultimate load-carrying capacity obtained within the FEM are higher than those attained with Koiter’s approximation method, but the leap takes place on the identical equilibrium path as the one determined from Koiter’s theory.


2018 ◽  
Vol 22 (7) ◽  
pp. 1554-1565 ◽  
Author(s):  
Jianwei Tu ◽  
Kui Gao ◽  
Lang He ◽  
Xinping Li

At present, extensive studies have been conducted relative to the topic of fiber-reinforced polymer(FRP)- reinforced concrete (RC) flexural members, and many design methods have also been introduced. There have, however, been few studies conducted on the topic of FRP-RC compression members. In light of this, eight glass-fiber-reinforced polymer (GFRP)-RC square columns (200×200×600 mm) were tested in order to investigate their axial compression performance. These columns were reinforced with GFRP longitudinal reinforcement and confined GFRP stirrup. These experiments investigated the effects of the longitudinal reinforcement ratio, stirrup configuration (spirals versus hoops) and spacing on the load-carrying capacity and failure modes of GFRP-RC rectangular columns. The test results indicate that the load-carrying capacity of longitudinal GFRP bars accounted for 3%-7% of the ultimate load-carrying capacity of the columns. The ultimate load-carrying capacity of RC columns confined with GFRP spirals increased by 0.8%-1.6% with higher ductility, compared to GFRP hoops. Reducing the stirrup spacing may prevent the buckling failure of the longitudinal bars and increase the ductility and load-carrying capacity of the GFRP-RC columns. It has been found that setting the GFRP compressive strength to 35% of the GFRP maximum tensile strength yields a reasonable estimate of ultimate load-carrying capacity of GFRP-RC columns.


2003 ◽  
Vol 1845 (1) ◽  
pp. 191-199 ◽  
Author(s):  
Ondrej Kalny ◽  
Robert J. Peterman ◽  
Guillermo Ramirez ◽  
C. S. Cai ◽  
Dave Meggers

Stiffness and ultimate load-carrying capacities of glass fiber-reinforced polymer honeycomb sandwich panels used in bridge applications were evaluated. Eleven full-scale panels with cross-section depths ranging from 6 to 31.5 in. (152 to 800 mm) have been tested to date. The effect of width-to-depth ratio on unit stiffness was found to be insignificant for panels with a width-to-depth ratio between 1 and 5. The effect of this ratio on the ultimate flexural capacity is uncertain because of the erratic nature of core-face bond failures. A simple analytical formula for bending and shear stiffness, based on material properties and geometry of transformed sections, was found to predict service-load deflections within 15% accuracy. Although some factors influencing the ultimate load-carrying capacity were clearly identified in this study, a reliable analytical prediction of the ultimate flexural capacity was not attained. This is because failures occur in the bond material between the outer faces and core, and there are significant variations in bond properties at this point due to the wet lay-up process, even for theoretically identical specimens. The use of external wrap layers may be used to shift the ultimate point of failure from the bond (resin) material to the glass fibers. Wrap serves to strengthen the relatively weak core–face interface and is believed to bring more consistency in determining the ultimate load-carrying capacity.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
N. Aravind ◽  
Amiya K. Samanta ◽  
Dilip Kr. Singha Roy ◽  
Joseph V. Thanikal

AbstractStrengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.


Sign in / Sign up

Export Citation Format

Share Document