Numerical Analysis for Reinforced Concrete Beams with Circular Openings in Flexural and Shear Zones Strengthened by Steel Plates

2018 ◽  
Vol 23 (2) ◽  
pp. 31-48
Author(s):  
Ahmed Ali AL-Dhabyani ◽  
Abdulwahab AL-Ansi

In the modern building construction, openings in beams are necessary to accommodate several service pipes and ducts. Due to these openings, high stress concentration occurs at its edges. Local cracks also appear around the openings as a result of the reduction in the beam stiffness, the load carrying capacity and the shear capacity. There are many studies which were conducted to develop and test different strengthening methods for the beams opining to increase the ultimate load capacity of the beams. However, from a practical point of view, it is better to have one strengthening method having the same specifications to be used in both; shear and flexural zones for circular opining beams in buildings. In spite of the prior studies, no study has addressed this issue; therefore, there is a need to study such a case. In this paper, an analytical study was conducted to investigate the behavior of the reinforced concrete (RC) beams with circular openings in flexural and shear zones strengthened by steel plates. A 3D FE modeling (ABAQUS 6.12) software was used to simulate five different specimens of RC beams. The study results showed that when the openings were strengthened by steel plates, the ultimate load carrying capacity increased, but the deflection was decreased when compared to the openings without strengthening. In addition, the model reliability was verified via good agreements between the experimental and numerical results.

Author(s):  
A. Hamoda ◽  
A. Basha ◽  
S. Fayed ◽  
K. Sennah

AbstractThis paper investigates numerically and experimentally the performance of reinforced concrete (RC) beam with unequal depths subjected to combined bending and shear. Such beams can geometrically be considered for unleveled reinforced concrete (RC) floor slab-beam system. However, it may generate critical disturbances in stress flow at the re-entrant corner (i.e. location of drop in beam depth). This research investigates the use of shear reinforcement and geometric properties to enhance cracking characteristics, yielding, ultimate load-carrying capacity, and exhibiting ductile failure mode. Ten reinforced concrete (RC) beams were constructed and tested experimentally considering the following key parameters: recess length, depth of smaller beam nib, and amount and layout of shear reinforcement at re-entrant corner. Finite element analysis (FEA) with material non-linearity was conducted in two RC beams that were tested experimentally to validate the computer modelling. The FEA models were then extended to conduct a parametric study to investigate the influence of geometric parameters (beam shape and width) and amount and arrangement of shear reinforcement on the structural response. Results confirmed that geometric properties and ratio of shear reinforcement at the re-entrant region significantly affect the behavior of reinforced concrete beam with unequal depths in terms of first cracking, yielding level, ultimate load carrying capacity and mode of failure.


2020 ◽  
Vol 857 ◽  
pp. 3-9
Author(s):  
Marwa R. Gaber ◽  
Hayder A. Al-Baghdadi

This paper presents a study (experimentally) for strengthening reinforced concrete (RC) beams with Near-Surface-Mounted (NSM) technique. The use of this technique with CFRP strips or rebars is an efficient technology for increasing the strength for flexure and shear or for repairing damaged reinforced concrete (RC) members. The objective of this research is to study, experimentally, RC beams either repaired or strengthened with NSM CFRP strips and follow their flexural behavior and failure modes. NSM-CFRP strips were used to strengthen three RC beam specimens, one of them was initially strengthened and tested up to failure. Four beam specimens have been initially subjected to preloading to 50% and 80% of ultimate load. Two of the specimens were either repaired or strengthened with NSM-CFRP strips. All the repaired/strengthened pre-damaged beams have been tested up to failure by using compression-testing machine. An appropriate-scale model was adopted. All the specimens have a cross-sectional dimension of 150 mm with an effective span of 110 mm. Depends on the experimental results, a better performance of the strengthened concrete specimens was obtained in both strength and serviceability. As a comparison with the control beam specimen, all the repaired specimens show a very good increase of about 40% in the load-carrying capacity and a high improvement in resistance to cracking of about 120% in NSM. On the other hand, the test results of NSM CFRP-strengthened concrete specimens with a preloading of 50% and 80% of the ultimate load show an increase of about 9% to 20% in the load-carrying capacity, for 50% and 80% pre-loading, respectively an improvement in deflection of about 2% to 27% in NSM, for 80% and 50% pre-loading, respectively.


Author(s):  
Burhan Ahmad ◽  
Muhammad Yousaf ◽  
Muhammad Irfan-ul-Hassan ◽  
Muhammad Burhan Sharif ◽  
Zahid Ahmed Siddiqi ◽  
...  

Web openings in reinforced concrete (RC) beams are provided to pass utility pipes and ducts through them. This causes high stresses (with local cracking) around the transverse web openings, which may lead to reduction in ultimate strength and stiffness of RC beams. Internal strengthening with shear reinforcement can increase ultimate strength of the beam with web openings. This paper presents an experimental study which was conducted to investigate load carrying capacity, mid-span deflection and failure modes of beams with web openings. A total of eighteen RC beams were included in the testing programme, which were tested under two-point loading. The beams contained both pre-planned and post-planned web openings. Experimental results showed that ultimate load of the beams decreased from forty-two to sixty-seven percent due to the presence of web openings in the shear zones. Shear strength of the beams with pre-planned web openings increased by thirty-six percent and one-hundred two percent as compared to the reference beam due to the increase of shear reinforcement by one-hundred twenty-two percent and three-hundred three percent, respectively. Similarly, increase in shear capacity up to six percent and fourteen percent was found for the beams with post-planned web openings due to the aforementioned increase in the area of shear reinforcement, respectively. The ultimate load carrying capacity was also compared with the theoretical models. Internal strengthening and pre planned opening were found effective for providing web openings in the beams.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
N. Aravind ◽  
Amiya K. Samanta ◽  
Dilip Kr. Singha Roy ◽  
Joseph V. Thanikal

AbstractStrengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.


2020 ◽  
pp. 002199832097373
Author(s):  
Fares Jnaid

This paper investigates the effects of different parameters on the live load carrying capacity of concrete beams reinforced with FRP bars. The author performed a parametric study utilizing an innovative numerical approach to inspect the effects of multiple variables such as reinforcement ratio, concrete compressive strength, span to depth ratio, FRP type, and bar diameter on load carrying capacity of FRP reinforced concrete beams. This study concluded that unless the span to height ratio is smaller than 8, tension-controlled sections are impractical as they do not meet code requirements for serviceability. In addition, it is recommended to use higher reinforcement ratios when using larger span to depth ratios and/or when using CFRP reinforcing bars. Moreover, larger number of bars with small diameter is more practical than fewer large diameter bars. Furthermore, this research suggests that increasing the concrete compressive strength is associated with a significant increase in the ultimate flexural capacity of FRP reinforced beams.


2018 ◽  
Vol 183 ◽  
pp. 02002 ◽  
Author(s):  
Jacek Selejdak ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

The article is devoted to an experimental research of the strength of reinforced concrete beams, and its dependence on a simultaneous influence of a corrosion environment and a loading factor. The tests have been carried out upon reinforced concrete specimens of 2100×200×100 mm size, with a regular reinforcement. The beams are of a span equaling to 1,9m with different reinforcing ratio of beams. The acid environment, namely 10 % H2SO4, was taken as a model of an aggressive environment. Reinforced concrete beams have been tested with and without the co-action of the aggressive environment and loading factor. Beams, which underwent a simultaneous action of the corrosive environment and loading, were loaded to a level 0.7 of its load-carrying capacity. The load-carrying capacity in aggressive environment in all the beams of all the series was achieved in 46-60 days. The influence of the simultaneous action of the aggressive environment and loading on the strength of reinforced-concrete beams has been described in the following work. It is necessary to note that the design code of Ukraine does not allow determining load carrying capacity of the beams affected by corrosion with simultaneous influence of loading with adequate accuracy. The analysis of experimental data has been done and the main directions of the design code’s correction have been formulated.


Sign in / Sign up

Export Citation Format

Share Document