scholarly journals Enhanced Proton Acceleration by Laser-Driven Collisionless Shock in the Near-Critical Density Target Embedding with Solid Nanolayers

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yue Chao ◽  
Xinxin Yan ◽  
Rui Xie ◽  
Lihua Cao ◽  
Chunyang Zheng ◽  
...  

Effects of solid nanolayers embedded in a near-critical density plasma on the laser-driven collisionless shock acceleration are investigated by using two-dimensional particle-in-cell simulations. Due to the interaction of nanolayers and the incident laser, an additional number of hot electrons are generated and an inhomogeneous magnetic field is induced. As a result, the collisionless shock is reinforced within the nanolayer gaps compared to the target without the structured nanolayers. When the laser intensity is 9.8 × 10 19  W / cm 2 , the amplitude of the electrostatic field is increased by 30% and the shock velocity is increased from 0.079c to 0.091c, leading to an enhancement of the peak energy and the cutoff energy of accelerated protons, from 6.9 MeV to 9.1 MeV and 12.2 MeV to 20.0 MeV, respectively. Furthermore, the effects of the width of the nanolayer gaps are studied, by adjusting the gap width of nanolayers, and optimal nanolayer setups for collisionless shock acceleration can be acquired.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Prashant Kumar Singh ◽  
Vishwa Bandhu Pathak ◽  
Jung Hun Shin ◽  
Il Woo Choi ◽  
Kazuhisa Nakajima ◽  
...  

Abstract With the recent advances in ultrahigh intensity lasers, exotic astrophysical phenomena can be investigated in laboratory environments. Collisionless shock in a plasma, prevalent in astrophysical events, is produced when a strong electric or electromagnetic force induces a shock structure in a time scale shorter than the collision time of charged particles. A near-critical-density (NCD) plasma, generated with an intense femtosecond laser, can be utilized to excite a collisionless shock due to its efficient and rapid energy absorption. We present electrostatic shock acceleration (ESA) in experiments performed with a high-density helium gas jet, containing a small fraction of hydrogen, irradiated with a 30 fs, petawatt laser. The onset of ESA exhibited a strong dependence on plasma density, consistent with the result of particle-in-cell simulations on relativistic plasma dynamics. The mass-dependent ESA in the NCD plasma, confirmed by the preferential reflection of only protons with two times the shock velocity, opens a new possibility of selective acceleration of ions by electrostatic shock.


2019 ◽  
Vol 26 (12) ◽  
pp. 123102
Author(s):  
R. Xie ◽  
L. H. Cao ◽  
J. X. Gong ◽  
H. Cheng ◽  
Z. J. Liu ◽  
...  

2009 ◽  
Vol 27 (4) ◽  
pp. 611-617 ◽  
Author(s):  
T.P. Yu ◽  
M. Chen ◽  
A. Pukhov

AbstractWe study proton acceleration from a foil target with a transversely varying density using multi-dimensional Particle-in-Cell (PIC) simulations. In order to reduce electron heating and deformation of the target, circularly polarized Gaussian laser pulses at intensities on the order of 1022 Wcm−2 are used. It is shown that when the target density distribution fits that of the laser intensity profile, protons accelerated from the center part of the target have quasi-monoenergetic spectra and are well collimated. In our two-dimensional PIC simulations, the final peak energy can be up to 1.4 GeV with the full-width of half maximum divergence cone of less than 4°. We observe highly efficient energy conversion from the laser to the protons in the simulations.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 150 ◽  
Author(s):  
Tadzio Levato ◽  
Leonardo V. Goncalves ◽  
Vincenzo Giannini

The idea of using a gas-mixture comprising atoms with a high mass number in order to increase proton energies in laser induced plasma acceleration at critical density is investigated by means of 2D PIC (Particle-In-Cell) simulations. Comparing and discussing the case of a pure hydrogen plasma and that of a plasma containing higher mass number species with a small percentage of hydrogen, we demonstrate that the mixture enhances the energies of the accelerated protons. We also show that using a gas-mixture introduces the possibility of using the densities ratio in order to change the relative acceleration of the species.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Dan Levy ◽  
X. Davoine ◽  
A. Debayle ◽  
L. Gremillet ◽  
V. Malka

We study numerically the mechanisms of proton acceleration in gas–foil targets driven by an ultraintense femtosecond laser pulse. The target consists of a near-critical-density hydrogen gas layer of a few tens of microns attached to a $2\ \mathrm {\mu }$ m-thick solid carbon foil with a contaminant thin proton layer at its back side. Two-dimensional particle-in-cell simulations show that, at optimal gas density, the maximum energy of the contaminant protons is increased by a factor of $\sim$ 4 compared with a single foil target. This improvement originates from the near-complete laser absorption into relativistic electrons in the gas. Several energetic electron populations are identified, and their respective effect on the proton acceleration is quantified by computing the electrostatic fields that they generate at the protons’ positions. While each of those electron groups is found to contribute substantially to the overall accelerating field, the dominant one is the relativistic thermal bulk that results from the nonlinear wakefield excited in the gas, as analysed recently by Debayle et al. (New J. Phys., vol. 19, 2017, 123013). Our analysis also reveals the important role of the neighbouring ions in the acceleration of the fastest protons, and the onset of multidimensional effects caused by the time-increasing curvature of the proton layer.


2016 ◽  
Vol 34 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Ashutosh Sharma ◽  
Alexander Andreev

AbstractRecent advances in the production of high repetition, high power, and short laser pulse have enabled the generation of high-energy proton beam, required for technology and other medical applications. Here we demonstrate the effective laser driven proton acceleration from near-critical density hydrogen plasma by employing the short and intense laser pulse through three-dimensional (3D) particle-in-cell (PIC) simulation. The generation of strong magnetic field is demonstrated by numerical results and scaled with the plasma density and the electric field of laser. 3D PIC simulation results show the ring shaped proton density distribution where the protons are accelerated along the laser axis with fairly low divergence accompanied by off-axis beam of ring-like shape.


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
L. Willingale ◽  
S. R. Nagel ◽  
A. G. R. Thomas ◽  
C. Bellei ◽  
R. J. Clarke ◽  
...  

Copper activation was used to characterize high-energy proton beam acceleration from near-critical density plasma targets. An enhancement was observed when decreasing the target density, which is indicative for an increased laser-accelerated hot electron density at the rear target-vacuum boundary. This is due to channel formation and collimation of the hot electrons inside the target. Particle-in-cell simulations support the experimental observations and show the correlation between channel depth and longitudinal electric field strength is directly correlated with the proton acceleration.


Author(s):  
E. Boella ◽  
R. Bingham ◽  
R. A. Cairns ◽  
P. Norreys ◽  
R. Trines ◽  
...  

Two-dimensional particle-in-cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.


2007 ◽  
Vol 21 (03n04) ◽  
pp. 642-646 ◽  
Author(s):  
A. ABUDUREXITI ◽  
Y. MIKADO ◽  
T. OKADA

Particle-in-Cell (PIC) simulations of fast particles produced by a short laser pulse with duration of 40 fs and an intensity of 1020W/cm2 interacting with a foil target are performed. The experimental process is numerically simulated by considering a triangular concave target illuminated by an ultraintense laser. We have demonstrated increased acceleration and higher proton energies for triangular concave targets. We also determined the optimum target plasma conditions for maximum proton acceleration. The results indicated that a change in the plasma target shape directly affects the degree of contraction accelerated proton bunch.


Sign in / Sign up

Export Citation Format

Share Document