scholarly journals Influence of Precast Member Corbels on Seismic Performance of Precast Beam-Slab-Column Joints

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongtao Liu ◽  
Pengchao Kong ◽  
Taoping Ye

To improve the construction efficiency of precast structures, reinforced concrete corbels acted as support members are the most common connection method. This work presents the performance of a specific beam-to-column connection using corbels with different anchorage arrangements in precast beam-slab-column interior joint taken out from precast underground subway station. This paper investigates the performance of a specific full-scale precast concrete beam-slab-column interior joint with corbels and various connected methods subjected to low-cycle repeated loading. Meanwhile, the influences of concrete corbels (including column- and beam-end corbels) on the shear strength and deformation are investigated. The analyses results indicated that (1) corbels of the laminated beam (composite beam) can obviously improve the shear stress of the core region, which was beneficial for specimen design followed the strong-joint-weak-member concept; (2) a simplified approach to deal with the uneven thickness of corbels in the core region was proposed, which was utilized to study the effect of thickness on the shear performance of the core region; (3) the shear stress increased with respect to the compression stress, and the shear strain had a trend of decreasing according to calculating results using modified compression field theory; and (4) the deterministic expressions were proposed to predict the designed load of column corbels based on three different connection methods between laminated beams and core region of joint.

2012 ◽  
Vol 2012 ◽  
pp. 1-34 ◽  
Author(s):  
D. S. Sankar ◽  
Yazariah Yatim

Pulsatile flow of blood in narrow tapered arteries with mild overlapping stenosis in the presence of periodic body acceleration is analyzed mathematically, treating it as two-fluid model with the suspension of all the erythrocytes in the core region as non-Newtonian fluid with yield stress and the plasma in the peripheral layer region as Newtonian. The non-Newtonian fluid with yield stress in the core region is assumed as (i) Herschel-Bulkley fluid and (ii) Casson fluid. The expressions for the shear stress, velocity, flow rate, wall shear stress, plug core radius, and longitudinal impedance to flow obtained by Sankar (2010) for two-fluid Herschel-Bulkley model and Sankar and Lee (2011) for two-fluid Casson model are used to compute the data for comparing these fluid models. It is observed that the plug core radius, wall shear stress, and longitudinal impedance to flow are lower for the two-fluid H-B model compared to the corresponding flow quantities of the two-fluid Casson model. It is noted that the plug core radius and longitudinal impedance to flow increases with the increase of the maximum depth of the stenosis. The mean velocity and mean flow rate of two-fluid H-B model are higher than those of the two-fluid Casson model.


2011 ◽  
Vol 705 ◽  
pp. 258-279 ◽  
Author(s):  
Parsa Zamankhan ◽  
Brian T. Helenbrook ◽  
Shuichi Takayama ◽  
James B. Grotberg

AbstractWe study numerically the steady creeping motion of Bingham liquid plugs in two-dimensional channels as a model of mucus behaviour during airway reopening in pulmonary airways. In addition to flow analysis related to propagation of the plug, the stress distribution on the wall is studied for better understanding of potential airway epithelial cell injury mechanisms. The yield stress behaviour of the fluid was implemented through a regularized constitutive equation. The capillary number, $\mathit{Ca}$, and the Bingham number, $\mathit{Bn}$, which is the ratio of the yield stress to a characteristic viscous stress, varied over the ranges 0.025–0.1 and 0–1.5, respectively. For the range of parameters studied, it was found that, while the yield stress reduces the magnitude of the shearing along the wall, it can magnify the amplitude of the wall shear stress gradient significantly, and also it can elevate the magnitude of the wall shear stress and wall pressure gradient up to 30 % and 15 %, respectively. Therefore, the motion of mucus plugs can be more damaging to the airway epithelial cells due to the yield stress properties of mucus. The yield stress also modifies the profile of the plug where the amplitude of the capillary waves at the leading meniscus decreases with increase in $\mathit{Bn}$. Other findings are that: the thickness of the static film increases with increasing $\mathit{Bn}$; the driving pressure difference increases linearly with $\mathit{Bn}$; and increasing $\mathit{Bn}$ extends any wall stagnation point beneath the leading meniscus to an unyielded line segment beneath the leading meniscus. With an increase in $\mathit{Bn}$, the unyielded areas appear and grow in the adjacent wall film as well as the core region of the plug between the two menisci. The plug length, ${L}_{P} $, mostly modifies the topology of the yield surfaces. It was found that the unyielded area in the core region between the two menisci grows as the plug length decreases. The very short Bingham plug behaves like a solid lamella. In all computed liquid plugs moving steadily, the von Mises stress attains its maximum value near the interface of the leading meniscus in the transition region. For Bingham plugs moving very slowly, $\mathit{Ca}\ensuremath{\rightarrow} 0$, the driving pressure is non-zero.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


1984 ◽  
Vol 108 ◽  
pp. 257-258
Author(s):  
Michael Rosa ◽  
Jorge Melnick ◽  
Preben Grosbol

The massive H II region NGC 3603 is the closest galactic counterpart to the giant LMC nebula 30 Dor. Walborn (1973) first compared the ionizing OB/WR clusters of the two H II regions and suggested that R 136, the unresolved luminous WR + 0 type central object of 30 Dor, might be a multiple system like the core region of NGC 3603. Suggestions that the dominant component of R 136, i.e. R 136A, might be either a single or a very few supermassive and superluminous stars (Schmidt-Kaler and Feitzinger 1982, Savage et al. 1983) have recently been disputed by Moffat and Seggewiss (1983) and Melnick (1983), who have presented spectroscopic and photometric evidence to support the hypothesis of an unresolved cluster of stars. We have extended Walborn's original comparison of the apparent morphology of the two clusters by digital treatment of the images to simulate how the galactic cluster would look like if it were located in the LMC


1967 ◽  
Vol 45 (2) ◽  
pp. 939-943 ◽  
Author(s):  
F. R. N. Nabarro ◽  
T. R. Duncan

The dissociation of screw dislocations on [Formula: see text] planes in a b.c.c. metal can lead to unequal shear stresses for glide in opposite directions, while dissociation on [Formula: see text] planes cannot. Glide will occur in the former configuration only if the radius of the core of a partial dislocation exceeds [Formula: see text] of the radius of a symmetrically dissociated dislocation. If this condition is not satisfied, one partial dislocation runs to infinity before the remaining two coalesce.


Sign in / Sign up

Export Citation Format

Share Document