scholarly journals Protective Mechanism of Berberine on Human Retinal Pigment Epithelial Cells against Apoptosis Induced by Hydrogen Peroxide via the Stimulation of Autophagy

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shuai Li ◽  
Yizhou Jiang ◽  
Xingan Xing ◽  
Ruohong Lin ◽  
Qin Li ◽  
...  

Age-related macular degeneration (AMD) is a major cause of severe and irreversible vision loss with limited effective therapies. Diminished autophagy and increased oxidative damage caused by ROS in the retinal pigment epithelium (RPE) have been implicated in the pathogenesis of AMD, and strategies aimed at enhancing autophagy are likely to protect these cells from oxidative damage. We have previously shown that berberine (BBR), an isoquinoline alkaloid isolated from Chinese herbs, was able to protect human RPE cells from H2O2-induced oxidative damage through AMPK activation. However, the precise mechanisms behind this protective effect remain unclear. Given the essential role of AMPK in autophagy activation, we postulated that BBR may confer protection against H2O2-induced oxidative damage by stimulating AMPK-dependent autophagy. Our results showed that BBR was able to induce autophagy in D407 cells, whereas autophagy inhibitor PIKIII or silencing of LC3B blocked the protective effect of BBR. Further analysis showed that BBR activated the AMPK/mTOR/ULK1 signaling pathways and that both pharmacological and genetic inhibitions of the AMPK pathway abolished the autophagy-stimulating effect of BBR. Similar results were obtained in primary cultured human RPE cells. Taken together, these results demonstrate that BBR is able to stimulate autophagy in D407 cells via the activation of AMPK pathway and that its protective effect against H2O2-induced oxidative damage relies on its autophagy-modulatory effect. Our findings also provide evidence to support the potential application of BBR in preventing and treating AMD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xia Zhao ◽  
Linlin Liu ◽  
Yizhou Jiang ◽  
Marta Silva ◽  
Xuechu Zhen ◽  
...  

Age-related macular degeneration (AMD) is a leading cause of blindness with limited effective treatment. Although the pathogenesis of this disease is complex and not fully understood, the oxidative damage caused by excessive reactive oxygen species (ROS) in retinal pigment epithelium (RPE) has been considered as a major cause. Autophagy is essential for the degradation of cellular components damaged by ROS, and its dysregulation has been implicated in AMD pathogenesis. Therefore, strategies aiming to boost autophagy could be effective in protecting RPE cells from oxidative damage. Metformin is the first-line anti-type 2 diabetes drug and has been reported to stimulate autophagy in many tissues. We therefore hypothesized that metformin may be able to protect RPE cells against H2O2-induced oxidative damage by autophagy activation. In the present study, we found that metformin attenuated H2O2-induced cell viability loss, apoptosis, elevated ROS levels, and the collapse of the mitochondria membrane potential in D407 cells. Autophagy was stimulated by metformin, and inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) or knockdown of Beclin1 and LC3B blocked the protective effects of metformin. In addition, we showed that metformin could activate the AMPK pathway, whereas both pharmacological and genetic inhibitions of AMPK blocked the autophagy-stimulating and protective effects of metformin. Metformin conferred a similar protection against H2O2-induced oxidative damage in primary cultured human RPE cells. Taken together, these results demonstrate that metformin could protect RPE cells from H2O2-induced oxidative damage by stimulating autophagy via the activation of the AMPK pathway, supporting its potential use in the prevention and treatment of AMD.



2009 ◽  
Vol 297 (5) ◽  
pp. C1200-C1210 ◽  
Author(s):  
Kurt M. Bertram ◽  
Carolyn J. Baglole ◽  
Richard P. Phipps ◽  
Richard T. Libby

Cigarette smoke is the most important environmental risk factor for developing age-related macular degeneration (AMD). Damage to the retinal pigment epithelium (RPE) caused by cigarette smoke may underlie the etiology of AMD. This study investigated the molecular and cellular effects of cigarette smoke exposure on human RPE cells. ARPE-19 or primary human RPE cells were exposed to cigarette smoke extract (CSE) or hydroquinone (HQ), a component of cigarette smoke. The effect of this exposure on key aspects of RPE vitality including viability, cell size, mitochondrial membrane potential (ΔΨm), superoxide production, 4-hydroxy-2-nonenal (4-HNE), vascular endothelial growth factor (VEGF), and heme oxygenase-1 (HO-1) expression was determined. Exposure of RPE cells to CSE or HQ caused oxidative damage and apoptosis, characterized by a reduction in cell size and nuclear condensation. Evidence of oxidative damage also included increased lipid peroxidation (4-HNE) and mitochondrial superoxide production, as well as a decrease in intracellular glutathione (GSH). Exogenous administration of antioxidants (GSH and N-acetyl-cysteine) prevented oxidative damage to the RPE cells caused by CSE. Cigarette smoke also induced expression of VEGF, HO-1, and the transcription factor nuclear factor erythroid-derived 2, like 2 (NRF2). However, NRF2 was only modestly involved in CSE-induced HO-1 expression, as shown by the NRF2 small interfering RNA studies. These new findings demonstrate that cigarette smoke is a potent inducer of oxidative damage and cell death in human RPE cells. These data support the hypothesis that cigarette smoke contributes to AMD pathogenesis by causing oxidative damage and cell death to RPE cells.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chih-Chao Chang ◽  
Tien-Yi Huang ◽  
Hsin-Yuan Chen ◽  
Tsui-Chin Huang ◽  
Li-Chun Lin ◽  
...  

Age-related macular degeneration (AMD) affects the retinal macula and results in loss of vision, and AMD is the primary cause of blindness and severe visual impairment among elderly people worldwide. AMD is characterized by the accumulation of drusen in the Bruch’s membrane and dysfunction of retinal pigment epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD remains unclear, and no effective treatment exists. Accumulating evidence indicates that oxidative stress plays a critical role in RPE cell degeneration and AMD. Melatonin is an antioxidant that scavenges free radicals, and it has anti-inflammatory, antitumor, and antiangiogenic effects. This study investigated the antioxidative, antiapoptotic, and autophagic effects of melatonin on oxidative damage to RPE cells. We used hydrogen peroxide (H2O2) to stimulate reactive oxygen species production to cause cell apoptosis in ARPE-19 cell lines. Our findings revealed that treatment with melatonin significantly inhibited H2O2-induced RPE cell damage, decreased the apoptotic rate, increased the mitochondrial membrane potential, and increased the autophagy effect. Furthermore, melatonin reduced the Bax/Bcl-2 ratio and the expression levels of the apoptosis-associated proteins cytochrome c and caspase 7. Additionally, melatonin upregulated the expression of the autophagy-related proteins LC3-II and Beclin-1 and downregulated the expression of p62. Thus, melatonin’s effects on autophagy and apoptosis can protect against H2O2-induced oxidative damage in human RPE cells. Melatonin may have multiple protective effects on human RPE cells against H2O2-induced oxidative damage.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenpei Chen ◽  
Yuxin Ye ◽  
Zhongrui Wu ◽  
Junli Lin ◽  
Yiting Wang ◽  
...  

Dry age-related macular degeneration (dAMD) is a chronic degenerative ophthalmopathy that leads to serious burden of visual impairment. Antioxidation in retinal pigment epithelium (RPE) cells is considered as a potential treatment for dAMD. Our previous studies have showed that naringenin (NAR) protects RPE cells from oxidative damage partly through SIRT1-mediated antioxidation. In this study, we tested the hypothesis that the Nrf2 signaling is another protective mechanism of NAR on dAMD. NaIO3-induced mouse retinopathy and ARPE-19 cell injury models were established. Immunochemical staining, immunofluorescence, and western blotting were performed to detect the protein expressions of Nrf2 and HO-1. In addition, ML385 (activity inhibitor of Nrf2) and zinc protoporphyrin (ZnPP, activity inhibitor of HO-1) were applied to explore the effect of NaIO3 or NAR. The results showed that NAR increased the protein expressions of Nrf2 and HO-1 in the retinas in mice exposed to NaIO3 at the early stage. NAR treatment also resulted in a stronger activation of Nrf2 at the early stage in NaIO3-treated ARPE-19 cells. Moreover, inhibition of HO-1 by ZnPP weakened the cytoprotective effect of NAR. The constitutive accumulation and activation of Nrf2 induced by NaIO3 led to the death of RPE cells. However, NAR decreased the protein expressions of Nrf2 and HO-1 towards normal level in the mouse retinas and ARPE-19 cells exposed to NaIO3 at the late stage. Our findings indicate that NAR protects RPE cells from oxidative damage via activating the Nrf2 signaling pathway.



2021 ◽  
Vol 22 (16) ◽  
pp. 9042
Author(s):  
Samuel Abokyi ◽  
Sze-Wan Shan ◽  
Christie Hang-I Lam ◽  
Kirk Patrick Catral ◽  
Feng Pan ◽  
...  

In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.



2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Samuel Abokyi ◽  
Sze wan Shan ◽  
Chi-ho To ◽  
Henry Ho-lung Chan ◽  
Dennis Yan-yin Tse

Trehalose is a natural dietary molecule that has shown antiaging and neuroprotective effects in several animal models of neurodegenerative diseases. The role of trehalose in the management of age-related macular degeneration (AMD) is yet to be investigated and whether trehalose could be a remedy for the treatment of diseases linked to oxidative stress and NRF2 dysregulation. Here, we showed that incubation of human retinal pigment epithelial (RPE) cells with trehalose enhanced the mRNA and protein expressions of TFEB, autophagy genes ATG5 and ATG7, as well as protein expressions of macroautophagy markers, LC3B and p62/SQTM1, and the chaperone-mediated autophagy (CMA) receptor LAMP2. Cathepsin D, a hydrolytic lysosomal enzyme, was also increased by trehalose, indicating higher proteolytic activity. Moreover, trehalose upregulated autophagy flux evident by an increase in the endogenous LC3B level, and accumulation of GFP-LC3B puncta and free GFP fragments in GFP-LC3 ̶ expressing cells in the presence of chloroquine. In addition, the mRNA levels of key molecular targets implicated in RPE damage and AMD, such as vascular endothelial growth factor- (VEGF-) A and heat shock protein 27 (HSP27), were downregulated, whereas NRF2 was upregulated by trehalose. Subsequently, we mimicked in vitro AMD conditions using hydroquinone (HQ) as the oxidative insult on RPE cells and evaluated the cytoprotective effect of trehalose compared to vehicle treatment. HQ depleted NRF2, increased oxidative stress, and reduced the viability of cells, while trehalose pretreatment protected against HQ-induced toxicity. The cytoprotection by trehalose was dependent on autophagy but not NRF2 activation, since autophagy inhibition by shRNA knockdown of ATG5 led to a loss of the protective effect. The results support the transcriptional upregulation of TFEB and autophagy by trehalose and its protection against HQ-induced oxidative damage in RPE cells. Further investigation is, therefore, warranted into the therapeutic value of trehalose in alleviating AMD and retinal diseases associated with impaired NRF2 antioxidant defense.



Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1405
Author(s):  
Niina Bhattarai ◽  
Eveliina Korhonen ◽  
Yashavanthi Mysore ◽  
Kai Kaarniranta ◽  
Anu Kauppinen

Age-related macular degeneration (AMD) is a retinal disease leading to impaired vision. Cigarette smoke increases the risk for developing AMD by causing increased reactive oxygen species (ROS) production and damage in the retinal pigment epithelium (RPE). We have previously shown that the cigarette tar component hydroquinone causes oxidative stress in human RPE cells. In the present study, we investigated the propensity of hydroquinone to induce the secretion of interleukin (IL)-1β and IL-18. The activation of these cytokines is usually regulated by the Nucleotide-binding domain, Leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome. ARPE-19 cells were exposed to hydroquinone, and cell viability was monitored using the lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt (MTT) assays. Enzyme-linked immunosorbent assays (ELISAs) were used to measure the levels of proinflammatory cytokines IL-1β and IL-18 as well as NLRP3, caspase-1, and poly (ADP-ribose) polymerase (PARP). Hydroquinone did not change IL-1β release but significantly increased the secretion of IL-18. Cytoplasmic NLRP3 levels increased after the hydroquinone treatment of IL-1α-primed RPE cells, but IL-18 was equally released from primed and nonprimed cells. Hydroquinone reduced the intracellular levels of PARP, which were restored by treatment with the ROS scavenger N-acetyl-cysteine (NAC). NAC concurrently reduced the NLRP3 levels but had no effect on IL-18 release. In contrast, the NADPH oxidase inhibitor ammonium pyrrolidinedithiocarbamate (APDC) reduced the release of IL-18 but had no effect on the NLRP3 levels. Collectively, hydroquinone caused DNA damage seen as reduced intracellular PARP levels and induced NLRP3-independent IL-18 secretion in human RPE cells.



2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zi-Yuan Zhang ◽  
Xiao-Li Bao ◽  
Yun-Yi Cong ◽  
Bin Fan ◽  
Guang-Yu Li

Age-related macular degeneration (AMD) is a leading cause of severe visual loss and irreversible blindness in the elderly population worldwide. Retinal pigment epithelial (RPE) cells are the major site of pathological alterations in AMD. They are responsible for the phagocytosis of shed photoreceptor outer segments (POSs) and clearance of cellular waste under physiological conditions. Age-related, cumulative oxidative stimuli contribute to the pathogenesis of AMD. Excessive oxidative stress induces RPE cell degeneration and incomplete digestion of POSs, leading to the continuous accumulation of cellular waste (such as lipofuscin). Autophagy is a major system of degradation of damaged or unnecessary proteins. However, degenerative RPE cells in AMD patients cannot perform autophagy sufficiently to resist oxidative damage. Increasing evidence supports the idea that enhancing the autophagic process can properly alleviate oxidative injury in AMD and protect RPE and photoreceptor cells from degeneration and death, although overactivated autophagy may lead to cell death at early stages of retinal degenerative diseases. The crosstalk among the NFE2L2, PGC-1, p62, AMPK, and PI3K/Akt/mTOR pathways may play a crucial role in improving disturbed autophagy and mitigating the progression of AMD. In this review, we discuss how autophagy prevents oxidative damage in AMD, summarize potential neuroprotective strategies for therapeutic interventions, and provide an overview of these neuroprotective mechanisms.



2021 ◽  
Vol 22 (2) ◽  
pp. 600
Author(s):  
Gian Marco Tosi ◽  
Daniela Giustarini ◽  
Lorenzo Franci ◽  
Alberto Minetti ◽  
Francesco Imperatore ◽  
...  

Oxidative stress plays a key role in the pathophysiology of retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, which are the major causes of irreversible blindness in developed countries. An excess of reactive oxygen species (ROS) can directly cause functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells. Antioxidants may represent a preventive/therapeutic strategy and reduce the risk of progression of AMD. Among antioxidants, N-acetyl-L-cysteine (NAC) is widely studied and has been proposed to have therapeutic benefit in treating AMD by mitigating oxidative damage in RPE. Here, we demonstrate that N-acetyl-L-cysteine ethyl ester (NACET), a lipophilic cell-permeable cysteine derivative, increases the viability in oxidative stressed RPE cells more efficiently than NAC by reacting directly and more rapidly with oxidizing agents, and that NACET, but not NAC, pretreatment predisposes RPE cells to oxidative stress resistance and increases the intracellular reduced glutathione (GSH) pool available to act as natural antioxidant defense. Moreover, we demonstrate the ability of NACET to increase GSH levels in rats’ eyes after oral administration. In conclusion, even if experiments in AMD animal models are still needed, our data suggest that NACET may play an important role in preventing and treating retinal diseases associated with oxidative stress, and may represent a valid and more efficient alternative to NAC in therapeutic protocols in which NAC has already shown promising results.



2021 ◽  
Author(s):  
Nicole Schäfer ◽  
Anas Rasras ◽  
Delia Ceteras ◽  
Sabine Amslinger ◽  
Volker Enzmann ◽  
...  

Abstract Background Complement Factor H-Related 3 (FHR-3) is a major regulator of the complement system, which is associated with different diseases, such as age-related macular degeneration. The non-canonical local, cellular functions of FHR-3 remained poorly understood.Methods Human retinal pigment epithelium (RPE) cells (ARPE-19 cells and primary human RPE cells (hpRPE)), cultivated in Transwell® inserts, were apically treated with either FHR‑3 alone or with the chimerized monoclonal anti‑FHR-3 antibody RETC-2-ximab, or with FHR-1, FH, Properdin or not treated for 5 – 24 h, respectively. Interaction of FHR-3 with oxidative stress epitopes was determined by ELISA. Internalization studies of FHR-3 or FH by ARPE‑19 cells was determined by immunofluorescence live cell imaging. Impact of FHR-3 on RPE cell-specific complement components and inflammation markers were analyzed on mRNA (RT-qPCR) and on protein level (Western Blot, ELISA, protein secretion assays, immunofluorescence). Results Here, we report that FHR-3 bound to oxidative stress epitopes and competed with FH for interaction. Furthermore, FHR-3 was internalized by senescent viable RPE cells and modulated time-dependently complement component (C3, CFB) and receptor (C3aR, CR3) expression of human RPE cells. Independently of any external blood-derived proteins, complement activation products were detected. Anaphylatoxin C3a was visualized in treated cells and showed a translocation from the cytoplasm to the cell membrane after FHR-3 exposure. Subsequently, FHR-3 induced a RPE cell dependent pro-inflammatory micro-environment. Inflammasome NLRP3 activation and pro-inflammatory cytokine secretion of IL-1ß, IL-18, IL-6 and TNF-α were induced after FHR-3-RPE interaction. Additionally, important pattern recognition molecules of the innate immune system, Toll-like receptors 1 and 3, as well as proteasome subunits were impaired in RPE cells after FHR-3 incubation. A chimerized monoclonal anti-FHR-3 antibody, RETC‑2‑ximab, ameliorated the effect of FHR-3 on ARPE-19 cells.Conclusion Our studies suggest FHR-3 as an exogenous trigger molecule for the RPE cell complosome and as a productive target for a new therapeutic approach using RETC‑2‑ximab for associated degenerative diseases.



Sign in / Sign up

Export Citation Format

Share Document