scholarly journals Liposome Extract of Stachys pilifera Benth Effectively Improved Liver Damage due to Bile Duct Ligation Rats

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zahra Moslemi ◽  
Hassan Bardania ◽  
Izadpanah Gheitasi ◽  
Zahra Barmoudeh ◽  
Navid Omidifar ◽  
...  

Herbal medicines harbor essential therapeutic agents for the treatment of cholestasis. In this study, we have assessed the anticholestatic potential of Stachys pilifera Benth’s (SPB’s) hydroalcoholic extract encapsulated into liposomes using bile duct ligation- (BDL-) induced hepatic cholestasis in rats. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), malondialdehyde (MDA), total thiol (T-SH) content, protein carbonyl (PCO), total bilirubin (TBIL), albumin (ALB), and nitric oxide (NO) metabolite levels were measured in either liver tissue or plasma to assess liver damage. Moreover, expression of proinflammatory cytokines (IL-1β and TNF-α) and liver fibrosis markers (TGF-β and SM-α) which are driving forces of many liver disorders was also determined. The activity of AST, ALT, and ALP was significantly enhanced in the BDL group in comparison to the control group; however, treatment with liposomal (SPB) hydroalcoholic extract significantly reduced AST and ALT’s activity. Increases in MDA, TBIL, and NO levels and T-SH content due to BDL were restored to control levels by liposomal (SPB) hydroalcoholic extract treatment. Similarly, hepatic and plasma oxidative marker MDA levels, significantly enhanced by BDL, were significantly decreased by liposomal (SPB) hydroalcoholic extract treatment. Moreover, histopathological findings further demonstrated a significant decrease in hepatic damage in the liposomal (SPB) hydroalcoholic extract-treated BDL group. In addition, liposomal (SPB) hydroalcoholic extract treatment decreased the liver expression of inflammatory cytokines (IL-1β, TNF-α) and liver fibrosis markers (TGF-β and SM-α). Since liposomal (SPB) hydroalcoholic extract treatment alleviated the BDL-induced injury of the liver and improved the hepatic structure and function more efficiently in comparison to free SPB hydroalcoholic extract, probable liposomal (SPB) hydroalcoholic extract exhibits required potential therapeutic value in protecting the liver against BDL-caused oxidative injury.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Izadpanah Gheitasi ◽  
Nikta Motaghi ◽  
Hossein Sadeghi ◽  
Heibatollah Sadeghi ◽  
Zahra Moslemi ◽  
...  

Introduction. Cholestasis is caused by malfunction of the hepatobiliary system. This disorder is the result of the accumulation of bile fatty acids and other toxins in the liver. The aim of the current study was to investigate the antioxidative and hepatoprotective effects of methanolic extract of Origanum majorana L. (OM) on hepatic disorder and tissue damage induced by bile duct ligation (BDL) in rats. Materials and methods. Twenty-eight male Wistar rats were randomly divided into 4 groups including sham control group received vehicle (SC-V), bile duct ligation received vehicle (BDL-V), bile duct ligation group received OM extract (BDL + OM), and sham control group received OM extract (SC + OM). One day after surgery, the animals received vehicle or methanolic extract of OM 300 mg/kg/day for 7 consecutive days by oral gavage. Finally, the animals were anesthetized and the blood samples were collected from each animal. After sacrificing of animals, liver tissue from each rat was removed and divided into three parts: one part was used for preparing of homogenized tissue, one part was fixed in 10% neutral formalin for histopathology examination, and the third part was kept in liquid nitrogen for gene expression analysis. Biomarkers of oxidative stress in the liver tissue and serum, as well as histopathological changes of the liver, were assessed. Also, the gene expression of IL-1, TNF-α, TGF-β, and α-SMA has been measured. Results. The results showed that BDL-V significantly increased the activity of ALT, AST, ALP, and total bilirubin compared to the SC-V group. The oxidative stress markers such as MDA and FRAP significantly increased due to BDL, while the CAT activity reduced in the BDL-V group compared to SC-V group. Oral treatment with OM reduced ALT and AST activity, although it was not statistically significant. OM treatment considerably increased the activity of CAT compared to BDL group. BDL-V induced a significant histological change in the liver, while treatment with OM at a dose of 300 mg/kg showed a minor effect on histopathological changes. In addition, the mRNA of IL-1, TNF-α, TGF-β, and α-SMA significantly increased in the BDL-V group, while treatment with OM only significantly reduced TGF-β in comparison with BDL-V rats. Conclusions. The results of the present study showed that oral administration of OM extract had a moderate protective effect on cholestasis due to BDL. Indeed, more studies with different doses of extract are needed to confirm this finding.


2019 ◽  
Vol 120 (9) ◽  
pp. 14875-14884 ◽  
Author(s):  
Hossein Sadeghi ◽  
Nahid Azarmehr ◽  
Fatemeh Razmkhah ◽  
Heibatollah Sadeghi ◽  
Nazanin Danaei ◽  
...  

2004 ◽  
Vol 22 (6) ◽  
pp. 359-363 ◽  
Author(s):  
İbrahim Halil Bahçecıoğlu ◽  
Mehmet Yalniz ◽  
Hüseyin Ataseven ◽  
Nurullah Bülbüller ◽  
Muzaffer Keçecı ◽  
...  

2012 ◽  
Vol 32 (9) ◽  
pp. 1342-1353 ◽  
Author(s):  
Erawan Borkham-Kamphorst ◽  
Sebastian Huss ◽  
Eddy Leur ◽  
Ute Haas ◽  
Ralf Weiskirchen

FEBS Letters ◽  
2007 ◽  
Vol 581 (16) ◽  
pp. 3098-3104 ◽  
Author(s):  
Hongtao Wang ◽  
Yan Zhang ◽  
Robert O. Heuckeroth

2003 ◽  
Vol 285 (5) ◽  
pp. G1004-G1013 ◽  
Author(s):  
Zhi Zhong ◽  
Matthias Froh ◽  
Mark Lehnert ◽  
Robert Schoonhoven ◽  
Liu Yang ◽  
...  

Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1–2 days, and fibrosis developed 2–3 wk after bile duct ligation. Additionally, procollagen-α1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of α-smooth muscle actin and transforming growth factor-β and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45–73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document