scholarly journals Impacts of Sea Surface Temperature and Atmospheric Teleconnection Patterns in the Northern Mid-Latitudes on Winter Extremely Cold Events in North China

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liping Li ◽  
Wenjie Ni ◽  
Yige Li ◽  
Dong Guo ◽  
Hui Gao

The frequency distribution of winter extreme cold events (ECEs) in North China and the influences of mid-latitude sea surface temperature anomalies (SSTAs) in the Northern Hemisphere are studied. The results show that (1) the frequency of single station ECEs (SSECEs) in winter increases from southeast to northwest, with a decrease before 2008 and then a significant increase. This trend abrupt change occurs in late winter. (2) When the SST in the North Pacific shows an “El-Niño-like” anomaly in winter, it triggers the negative Arctic Oscillation (−AO), positive Pacific North America (+PNA), and positive Eurasia Pacific (+EUP) atmospheric teleconnection patterns in the mid-lower troposphere. As a result, the ridge to south of Lake Baikal becomes stronger. Meanwhile, SST in the North Atlantic shows a “reversed C” negative anomaly with North Atlantic Oscillation (+NAO), (+PNA)-like and (+EUP)-like patterns, and the ridge to southwest of Lake Baikal becomes stronger. Furthermore, both cause the Siberian High to become weaker in the north and stronger in the south. With the weaker East Asia subtropical jet and stronger East Asia winter monsoon, these factors lead to a significant increase of SSECE frequency in North China. (3) When the SSTA shows an “El Niño-like” developing pattern from summer to autumn in the North Pacific, the winter SSECE frequency will be higher. (4) The purported mechanism between the mid-latitude SSTA and the winter SSECE frequency in North China is the following: the SSTA in the North Pacific in summer and autumn excites atmospheric teleconnection wave trains, and the Atlantic stores these anomaly signals. In winter, the interaction between the SSTAs in the North Pacific and the North Atlantic enhances the Eurasian teleconnection wave train. With the upstream fluctuation energy dispersing downstream, the wave train centers move eastward with the season, resulting in an increase in the frequency of the SSECEs.

2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


2007 ◽  
Vol 20 (11) ◽  
pp. 2706-2719 ◽  
Author(s):  
Mihai Dima ◽  
Gerrit Lohmann

Abstract The physical processes associated with the ∼70-yr period climate mode, known as the Atlantic multidecadal oscillation (AMO), are examined. Based on analyses of observational data, a deterministic mechanism relying on atmosphere–ocean–sea ice interactions is proposed for the AMO. Variations in the thermohaline circulation are reflected as uniform sea surface temperature anomalies in the North Atlantic. These anomalies are associated with a hemispheric wavenumber-1 sea level pressure (SLP) structure in the atmosphere that is amplified through atmosphere–ocean interactions in the North Pacific. The SLP pattern and its associated wind field affect the sea ice export through Fram Strait, the freshwater balance in the northern North Atlantic, and consequently the strength of the large-scale ocean circulation. It generates sea surface temperature anomalies with opposite signs in the North Atlantic and completes a negative feedback. The authors find that the time scale of the cycle is associated with the thermohaline circulation adjustment to freshwater forcing, the SST response to it, the oceanic adjustment in the North Pacific, and the sea ice response to the wind forcing. Finally, it is argued that the Great Salinity Anomaly in the late 1960s and 1970s is part of AMO.


2013 ◽  
Vol 26 (21) ◽  
pp. 8654-8670 ◽  
Author(s):  
Tomoya Shimura ◽  
Nobuhito Mori ◽  
Hajime Mase

Abstract Understanding long-term, ocean wave climate variability is important to assess climate change impacts on coastal and ocean physics and engineering. Teleconnection patterns can represent wave climate variability in the context of climate change. The objective of this study is to identify how large-scale spatial distributions of wave heights vary on a monthly basis and how they are influenced by various teleconnection patterns using reanalysis datasets. The wave height climate responses to teleconnection patterns in the eastern part of the North Pacific and North Atlantic are more sensible than in the corresponding western parts. The dominant spatial patterns of monthly averaged wave height variability in winter were obtained by empirical orthogonal function analysis. The three dominant patterns in the North Pacific and North Atlantic are similar. It is remarkable that one of the three dominant patterns, a band-shaped pattern, exhibits a strong relation to the teleconnection pattern in each ocean. The band-shaped pattern for the North Pacific was investigated in detail and found to be related to the west Pacific (WP) pattern. Where and how each teleconnection pattern influences wave climate becomes apparent especially during winter.


2010 ◽  
Vol 23 (14) ◽  
pp. 3835-3854 ◽  
Author(s):  
Xia Zhao ◽  
Jianping Li

Abstract The spatiotemporal characteristics of the winter-to-winter recurrence (WWR) of sea surface temperature anomalies (SSTA) in the Northern Hemisphere (NH) are comprehensively studied through lag correlation analysis. On this basis the relationships between the SSTA WWR and the WWR of the atmospheric circulation anomalies, El Niño–Southern Oscillation (ENSO), and SSTA interdecadal variability are also investigated. Results show that the SSTA WWR occurs over most parts of the North Pacific and Atlantic Oceans, but the spatiotemporal distributions of the SSTA WWR are distinctly different in these two oceans. Analyses indicate that the spatiotemporal distribution of the SSTA WWR in the North Atlantic Ocean is consistent with the spatial distribution of the seasonal cycle of its mixed layer depth (MLD), whereas that in the North Pacific Ocean, particularly the recurrence timing, cannot be fully explained by the change in the MLD between winter and summer in some regions. In addition, the atmospheric circulation anomalies also exhibit the WWR at the mid–high latitude of the NH, which is mainly located in eastern Asia, the central North Pacific, and the North Atlantic. The sea level pressure anomalies (SLPA) in the central North Pacific are essential for the occurrence of the SSTA WWR in this region. Moreover, the strongest positive correlation occurs when the SLPA lead SSTA in the central North Pacific by 1 month, which suggests that the atmospheric forcing on the ocean may play a dominant role in this region. Therefore, the “reemergence mechanism” is not the only process influencing the SSTA WWR, and the WWR of the atmospheric circulation anomalies may be one of the causes of the SSTA WWR in the central North Pacific. Finally, the occurrence of the SSTA WWR in the NH is closely related to SSTA interdecadal variability in the NH, but it is linearly independent of ENSO.


2021 ◽  
pp. 1-68
Author(s):  
Jing Ming ◽  
Jianqi Sun

AbstractThis study investigates the relationship between the central tropical Pacific (CTP) sea surface temperature (SST) and the surface air temperature (SAT) variability un-related to canonical El Niño-Southern Oscillation (ENSO) over mid-to-high latitude Eurasia during boreal summers over the past half-century. The results show that their relationship experienced a decadal shift around the early 1980s. Before the early 1980s, the Eurasian SAT-CTP SST connection was weak; after that time, the relationship became stronger, and the SAT anomalies exhibited a significant wave-like pattern over Eurasia. Such a decadal change in the Eurasian SAT-CTP SST relationship could be attributed to decadal changes in the mean state and variability of CTP SST. The warmer mean state and enhanced SST variability after the early 1980s reinforced the convective activities over the tropical Pacific, leading to significantly anomalous divergence/convergence and Rossby wave sources over the North Pacific. This outcome further excited the wave train propagating along the Northern Hemisphere zonal jet stream to northern Eurasia and then affected the surface heat fluxes and atmospheric circulations over the region, resulting in wave-like SATs over Eurasia. However, during the period before the early 1980s, the CTP SST had a weak impact on the North Pacific atmospheric circulation and was consequently not able to excite the wave train pattern to impact the Eurasian atmospheric circulation and SATs. The physical processes linking the CTP SST and Eurasian SAT are further confirmed by numerical simulations. The results of this study are valuable to understanding the variability of summer Eurasian SATs.


2019 ◽  
Vol 32 (21) ◽  
pp. 7437-7451 ◽  
Author(s):  
Changlin Chen ◽  
Guihua Wang ◽  
Shang-Ping Xie ◽  
Wei Liu

ABSTRACT The Kuroshio and Gulf Stream, the subtropical western boundary currents of the North Pacific and North Atlantic, play important roles in meridional heat transport and ocean–atmosphere interaction processes. Using a multimodel ensemble of future projections, we show that a warmer climate intensifies the upper-layer Kuroshio, in contrast to the previously documented slowdown of the Gulf Stream. Our ocean general circulation model experiments show that the sea surface warming, not the wind change, is the dominant forcing that causes the upper-layer Kuroshio to intensify in a warming climate. Forced by the sea surface warming, ocean subduction and advection processes result in a stronger warming to the east of the Kuroshio than to the west, which increases the isopycnal slope across the Kuroshio, and hence intensifies the Kuroshio. In the North Atlantic, the Gulf Stream slows down as part of the Atlantic meridional overturning circulation (AMOC) response to surface salinity decrease in the high latitudes under global warming. The distinct responses of the Gulf Stream and Kuroshio to climate warming are accompanied by different regional patterns of sea level rise. While the sea level rise accelerates along the northeastern U.S. coast as the AMOC weakens, it remains close to the global mean rate along the East Asian coast as the intensifying Kuroshio is associated with the enhanced sea level rise offshore in the North Pacific subtropical gyre.


2005 ◽  
Vol 18 (9) ◽  
pp. 1423-1434 ◽  
Author(s):  
Meiji Honda ◽  
Yochanan Kushnir ◽  
Hisashi Nakamura ◽  
Shozo Yamane ◽  
Stephen E. Zebiak

Abstract The potential predictability associated with the remote influence of midlatitude tropospheric anomalies over the North Pacific or the North Atlantic, via a seesawlike interannual oscillation between the surface Aleutian and Icelandic lows (AL and IL, respectively) is investigated. Data from a 24-member ensemble of 50-yr atmospheric general circulation model simulation forced with observed sea surface temperature (SST) conditions are analyzed by separating the total simulated fluctuations into the external component forced by the prescribed SST and the internal component generated by atmospheric internal dynamics. The AL–IL seesaw can be identified in both the external and internal components of the variability. In the external variability, determined through the ensemble mean, the seesaw is gradually formed from December to March through the development of a Pacific–North American (PNA) pattern–like wave train, remotely forced by the El Niño–Southern Oscillation. The amplitudes of the externally forced North Atlantic anomalies are only about half as large as the North Pacific anomalies. The potential predictability of the Atlantic anomalies, defined as the ratio of the SST-forced variance to the total variance, does not exceed the 20% level. In the internal component of the variability, determined from the deviations of each ensemble member from the ensemble mean, the negative correlation between the AL and IL anomalies is modest but persistent through winter. It is confirmed that, regardless of the polarity of the AL–IL seesaw, the IL anomalies are formed through eastward wave activity propagation of the stationary Rossby wave train emanating from the AL region in the form of what may be called a “PNAA pattern,” the extension of the PNA-like wave train into the Atlantic. Thus, the midwinter development of North Pacific anomalies is found to be a necessary, though not sufficient, condition for the seesaw formation. The persistence of the North Pacific anomalies beyond a 1-month time span appears to augment the probability of the seesaw formation by sustaining eastward wave activity propagation to the North Atlantic.


2016 ◽  
Vol 10 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Masayo Ogi ◽  
Søren Rysgaard ◽  
David G. Barber

Anomalous cold temperatures and strong cyclonic circulation were observed during winter 2013/14 over North America. In this article, we propose for the first time that positive East Atlantic (EA) and positive Tropical/Northern Hemisphere (TNH) patterns were dominant in the winter of 2013/14. The values of the EA and TNH indices for winter 2013/14 were the highest and the second highest for the period of record 1951-2014, respectively. The combined EA and TNH pattern is similar to the corresponding atmospheric circulation observed in the winter of 2013/14. The regression patterns of air temperatures on the EA and TNH index show negative anomalies over North America and the North Atlantic Ocean and positive anomalies over the North Pacific Ocean and the mid-latitude Atlantic Ocean. The regression pattern is similar to air temperature anomalies in winter 2013/14. In addition, the combined EA and TNH pattern correlates with sea surface temperature (SST) anomalies over the North Pacific and North Atlantic that are similar to the winter SST anomalies in winter 2013/14. The EA and TNH teleconnection patterns have contributed to the anomalous atmospheric circulation associated with the extreme cold winter over North America in 2013/14.


Sign in / Sign up

Export Citation Format

Share Document