scholarly journals A New Method for Detecting Compensation Hole Parameters of Automobile Brake Master Cylinder Based on Machine Vision

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Changfu Zhao ◽  
Hongchang Ding ◽  
Guohua Cao ◽  
Ying Zhang

The machining accuracy of the compensation hole of the automobile brake master cylinder directly determines the safety of the automobile and the reliability of parking. How to detect the parameters of the compensation hole with high precision becomes a crucial issue. In this paper, by analyzing the principle of Hough transform detection technology and several optimization algorithms, a new method combining Zernike moment and improved gradient Hough transform is proposed to detect the circular hole parameters. The simulation experiment shows that the proposed algorithm satisfies 0.1 pixels in the coordinate detection of the center position, and the radius detection accuracy is 0.05 pixels, with fast detection speed and good robustness. Compared with the random Hough transform algorithm and the gradient Hough transform algorithm, the algorithm proposed in this paper has higher detection accuracy, faster detection speed, and better robustness, which meets the online detection accuracy requirements of the brake master cylinder compensation hole.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6961
Author(s):  
Xuan Liu ◽  
Yong Li ◽  
Feng Shuang ◽  
Fang Gao ◽  
Xiang Zhou ◽  
...  

In power inspection tasks, the insulator and spacer are important inspection objects. UAV (unmanned aerial vehicle) power inspection is becoming more and more popular. However, due to the limited computing resources carried by a UAV, a lighter model with small model size, high detection accuracy, and fast detection speed is needed to achieve online detection. In order to realize the online detection of power inspection objects, we propose an improved SSD (single shot multibox detector) insulator and spacer detection algorithm using the power inspection images collected by a UAV. In the proposed algorithm, the lightweight network MnasNet is used as the feature extraction network to generate feature maps. Then, two multiscale feature fusion methods are used to fuse multiple feature maps. Lastly, a power inspection object dataset containing insulators and spacers based on aerial images is built, and the performance of the proposed algorithm is tested on real aerial images and videos. Experimental results show that the proposed algorithm can efficiently detect insulators and spacers. Compared with existing algorithms, the proposed algorithm has the advantages of small model size and fast detection speed. The detection accuracy can achieve 93.8%. The detection time of a single image on TX2 (NVIDIA Jetson TX2) is 154 ms and the capture rate on TX2 is 8.27 fps, which allows realizing online detection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xuewei Wang ◽  
Jun Liu ◽  
Guoxu Liu

Background: In view of the existence of light shadow, branches occlusion, and leaves overlapping conditions in the real natural environment, problems such as slow detection speed, low detection accuracy, high missed detection rate, and poor robustness in plant diseases and pests detection technology arise.Results: Based on YOLOv3-tiny network architecture, to reduce layer-by-layer loss of information during network transmission, and to learn from the idea of inverse-residual block, this study proposes a YOLOv3-tiny-IRB algorithm to optimize its feature extraction network, improve the gradient disappearance phenomenon during network deepening, avoid feature information loss, and realize network multilayer feature multiplexing and fusion. The network is trained by the methods of expanding datasets and multiscale strategies to obtain the optimal weight model.Conclusion: The experimental results show that when the method is tested on the self-built tomato diseases and pests dataset, and while ensuring the detection speed (206 frame rate per second), the mean Average precision (mAP) under three conditions: (a) deep separation, (b) debris occlusion, and (c) leaves overlapping are 98.3, 92.1, and 90.2%, respectively. Compared with the current mainstream object detection methods, the proposed method improves the detection accuracy of tomato diseases and pests under conditions of occlusion and overlapping in real natural environment.


2021 ◽  
Vol 252 ◽  
pp. 01018
Author(s):  
Changfu Zhao ◽  
Hongchang Ding ◽  
Guohua Cao ◽  
Han Hou

The compensation hole of the automobile brake master cylinder is an important structural part for adjusting the reservoir and pressure chamber of the brake master cylinder. Its detection accuracy is strictly controlled. However, because the compensation hole is located on the inner wall of the blind hole, the existing detection method cannot meet the testing needs. Therefore, this paper introduces the SSD model into the detection of the compensation hole of the brake master cylinder, and realizes the rapid positioning of the compensation hole by means of network fine-tuning. The compensation hole positioning detection is carried out on the self-developed automobile brake master cylinder compensation hole detector. The entire detection process time is about 5s, and the positioning accuracy is high. We apply the fine-tuning SSD model to the detection of the compensation hole of automobile brake master cylinder, which replaces the traditional method based on human-computer interaction to determine the position of the compensation hole. It has better detection accuracy and faster detection speed, and lays the foundation for the subsequent detection of the size of the compensation hole.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110346
Author(s):  
Changfu Zhao ◽  
Hongchang Ding ◽  
Guohua Cao ◽  
Han Hou

Machine vision is a key technology to achieve high detection accuracy for the compensation hole parameters of automobile brake master cylinders, which influence automobile safety and parking reliability. As an important part of the automobile brake master cylinder, the compensation hole can play an important role in regulating the brake fluid in the reservoir tank and brake chamber, and its dimensional accuracy and processing quality are strictly controlled. Therefore, determining how to accurately obtain images of the compensation hole is a primary problem in the detection of compensation hole parameters. In this paper, fully automatic equipment for compensation hole detection in automobile brake master cylinders is designed using an image processing algorithm to realize the automatic positioning of the compensation hole and automatic detection of size parameters. Experiments show that the automatic positioning and detection time for the compensation hole is less than 8 s, the detection accuracy of the compensation hole size is higher than ±0.021 mm, and the position detection accuracy for the compensation hole is higher than ±0.045 mm. The compensation hole detection technology proposed in this paper provides high real-time performance and good robustness while meeting accuracy requirements and detection speed.


2021 ◽  
Vol 11 (14) ◽  
pp. 6269
Author(s):  
Wang Jing ◽  
Wang Leqi ◽  
Han Yanling ◽  
Zhang Yun ◽  
Zhou Ruyan

For the fast detection and recognition of apple fruit targets, based on the real-time DeepSnake deep learning instance segmentation model, this paper provided an algorithm basis for the practical application and promotion of apple picking robots. Since the initial detection results have an important impact on the subsequent edge prediction, this paper proposed an automatic detection method for apple fruit targets in natural environments based on saliency detection and traditional color difference methods. Combined with the original image, the histogram backprojection algorithm was used to further optimize the salient image results. A dynamic adaptive overlapping target separation algorithm was proposed to locate the single target fruit and further to determine the initial contour for DeepSnake, in view of the possible overlapping fruit regions in the saliency map. Finally, the target fruit was labeled based on the segmentation results of the examples. In the experiment, 300 training datasets were used to train the DeepSnake model, and the self-built dataset containing 1036 pictures of apples in various situations under natural environment was tested. The detection accuracy of target fruits under non-overlapping shaded fruits, overlapping fruits, shaded branches and leaves, and poor illumination conditions were 99.12%, 94.78%, 90.71%, and 94.46% respectively. The comprehensive detection accuracy was 95.66%, and the average processing time was 0.42 s in 1036 test images, which showed that the proposed algorithm can effectively separate the overlapping fruits through a not-very-large training samples and realize the rapid and accurate detection of apple targets.


2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.


2021 ◽  
Vol 10 (3) ◽  
pp. 168
Author(s):  
Peng Liu ◽  
Yongming Wei ◽  
Qinjun Wang ◽  
Jingjing Xie ◽  
Yu Chen ◽  
...  

Landslides are the most common and destructive secondary geological hazards caused by earthquakes. It is difficult to extract landslides automatically based on remote sensing data, which is import for the scenario of disaster emergency rescue. The literature review showed that the current landslides extraction methods mostly depend on expert interpretation which was low automation and thus was unable to provide sufficient information for earthquake rescue in time. To solve the above problem, an end-to-end improved Mask R-CNN model was proposed. The main innovations of this paper were (1) replacing the feature extraction layer with an effective ResNeXt module to extract the landslides. (2) Increasing the bottom-up channel in the feature pyramid network to make full use of low-level positioning and high-level semantic information. (3) Adding edge losses to the loss function to improve the accuracy of the landslide boundary detection accuracy. At the end of this paper, Jiuzhaigou County, Sichuan Province, was used as the study area to evaluate the new model. Results showed that the new method had a precision of 95.8%, a recall of 93.1%, and an overall accuracy (OA) of 94.7%. Compared with the traditional Mask R-CNN model, they have been significantly improved by 13.9%, 13.4%, and 9.9%, respectively. It was proved that the new method was effective in the landslides automatic extraction.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


2021 ◽  
Vol 11 (2) ◽  
pp. 851
Author(s):  
Wei-Liang Ou ◽  
Tzu-Ling Kuo ◽  
Chin-Chieh Chang ◽  
Chih-Peng Fan

In this study, for the application of visible-light wearable eye trackers, a pupil tracking methodology based on deep-learning technology is developed. By applying deep-learning object detection technology based on the You Only Look Once (YOLO) model, the proposed pupil tracking method can effectively estimate and predict the center of the pupil in the visible-light mode. By using the developed YOLOv3-tiny-based model to test the pupil tracking performance, the detection accuracy is as high as 80%, and the recall rate is close to 83%. In addition, the average visible-light pupil tracking errors of the proposed YOLO-based deep-learning design are smaller than 2 pixels for the training mode and 5 pixels for the cross-person test, which are much smaller than those of the previous ellipse fitting design without using deep-learning technology under the same visible-light conditions. After the combination of calibration process, the average gaze tracking errors by the proposed YOLOv3-tiny-based pupil tracking models are smaller than 2.9 and 3.5 degrees at the training and testing modes, respectively, and the proposed visible-light wearable gaze tracking system performs up to 20 frames per second (FPS) on the GPU-based software embedded platform.


Sign in / Sign up

Export Citation Format

Share Document