scholarly journals Adaptive Radar Waveform Design Based on Weighted MI and the Difference of Two Mutual Information Metrics

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fengming Xin ◽  
Bin Wang ◽  
Shumin Li ◽  
Xin Song ◽  
Chi-Hsu Wang

This study deals with the problem of radar waveform design based on the weighted mutual information (MI) and the difference of two mutual information metrics (DMI) in signal-dependent interference. Since the target and clutter information are included in the received signal at the beginning of the design, DMI-based waveform is designed according to the following criterion: maximizing the MI between the received signal and target impulse response while minimizing the MI between the received signal and the clutter impulse response. This criterion is equivalent to maximizing the difference between the first MI and the second MI. Then maximizing the difference of two types of MI is used as the objective function, and the optimization model with the transmitted waveform energy constraint is established. In order to solve it, we resort to maximum marginal allocation (MMA) method to find the DMI-based waveform. Since DMI-based waveform does not allocate energy to the frequency band where the clutter power spectral density (PSD) is greater than the target PSD, we propose to weight the MI-based waveform and DMI-based waveform to synthesize the final optimal waveform. It could provide different trade-offs between two types of MI. Simulation results show the proposed algorithm is valid.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Wang ◽  
Jinkuan Wang ◽  
Xin Song ◽  
Fengming Xin

In intelligent radar, it is an important problem for the transmitted waveform to adapt to the environment in which radar works. In this paper, we propose mutual information model of adaptive waveform design, which can convert the problem of adaptive waveform design into the problem of optimization. We consider two situations of no clutter and clutter and use Newton method and interior point method to solve the optimization problem. Then we can draw the design criterion for the transmitted waveform in cognitive radar and get a greater mutual information from the simulation results. Finally, the whole paper is summarized.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Bin Wang ◽  
Xiaolei Hao

Cognitive radar can overcome the shortcomings of traditional radars that are difficult to adapt to complex environments and adaptively adjust the transmitted waveform through closed-loop feedback. The optimization design of the transmitted waveform is a very important issue in the research of cognitive radar. Most of the previous studies on waveform design assume that the prior information of the target spectrum is completely known, but actually the target in the real scene is uncertain. In order to simulate this situation, this paper uses a robust waveform design scheme based on signal-to-interference-plus-noise ratio (SINR) and mutual information (MI). After setting up the signal model, the SINR and MI between target and echo are derived based on the information theory, and robust models for MI and SINR are established. Next, the MI and SINR are maximized by using the maximum marginal allocation (MMA) algorithm and the water-filling method which is improved by bisection algorithm. Simulation results show that, under the most unfavorable conditions, the robust transmitted waveform has better performance than other waveforms in the improvement degree of SINR and MI. By comparing the robust transmitted waveform based on SINR criterion and MI criterion, the influence on the variation trend of SINR and MI is explored, and the range of critical value of Ty is found. The longer the echo observation time is, the better the performance of the SINR-based transmitted waveform over the MI-based transmitted waveform is. For the mutual information between the target and the echo, the performance of the MMA algorithm is better than the improved water-filling algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Bin Wang ◽  
Shuangqi Yu

Cognitive radar is an intelligent radar system, and adaptive waveform design is one of the core problems in cognitive radar research. In the previous studies, it is assumed that the prior information of the target is known, and the definition of target spectrum variance has not changed. In this paper, we study on robust waveform design problem in multiple targets scene. We hope that the upper and lower bounds of the uncertainty range of robustness are more close to the actual situation, and establish a finite time random target signal model based on mutual information (MI). On the basis of the optimal transmitted waveform and robust waveform based on MI, we redefine the target spectrum variance as harmonic variance, and propose a novel robust waveform design method based on harmonic variance and MI. We compare its performance with robust waveform based on original variance. Simulation results show that, in the situation of multiple targets, compared to the original variance, the MI lifting rate of robust waveform based on harmonic variance relative to the optimal transmitted waveform in the uncertainty range has great improvement. In certain circumstances, robust waveform based on harmonic variance and MI is more suitable for more targets.


2011 ◽  
Vol 460-461 ◽  
pp. 207-212
Author(s):  
Bin Wang ◽  
Jin Kuan Wang ◽  
Xin Song

Traditional radar systems are lack of adaptivity to the environment. Modern radar systems should transmit different waveforms according to different environment. In this paper, mutual information model of adaptive waveform design is proposed. With this model, different waveforms can be designed adaptively under different radar working conditions. Simulation results demonstrate the validity of our model. Finally, the whole paper is summarized.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chaoyun Mai ◽  
Jinping Sun ◽  
Rui Zhou ◽  
Guohua Wang

According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate) and LPI (low probability of intercept). The simulation results verify the effectiveness of this method.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2586 ◽  
Author(s):  
Xijin Song ◽  
Xuelong Wang ◽  
Zhao Dong ◽  
Xiaojiao Zhao ◽  
Xudong Feng

Using a pseudo-random sequence to encode the transmitted waveform can significantly improve the working efficiency and depth of detection of electromagnetic exploration. The selection of parameters of pseudo-random sequence plays an important role in correlation identification and noise suppression. A discrete cycle correlation identification method for extracting the earth impulse response is proposed. It can suppress the distortion in the early stage of the excitation field and the glitches of the cross correlation function by traditional method. This effectively improves the accuracy of correlation identification. The influence of the order and the cycles of m-series pseudo-random coding on its autocorrelation properties is studied. The numerical results show that, with the increase of the order of m-sequence, the maximum out-of-phase periodic autocorrelation function decreases rapidly. Therefore, it is very beneficial to achieve synchronization. The limited-cycle m-sequences have good autocorrelation properties. As the period of the m-sequence increases and the width of the symbol decreases, the overall autocorrelation becomes closer to the impact function. The discussion of the influence of symbol width and period of m-sequence on its frequency bandwidth and power spectral density shows that the narrower the symbol width, the wider its occupied band. The longer the period, the smaller the power spectral line spacing. The abilities of m-sequence to suppress DC (Direct-current) interference, Schumann frequency noise, and sine-wave noise are analyzed. Numerical results show that the m-sequence has excellent ability to suppress DC interference and Schumann frequency noise. However, for high-order harmonic noise, the correlation identification error appears severe oscillation in the middle and late stages of the impulse response. It indicates that the ability of m-sequence to suppress high-frequency sinusoidal noise is deteriorated. In practical applications, the parameters of the transmitted waveform should be reasonably selected in combination with factors including transmitter performance, hardware noise, and ambient noise level to achieve the best identification effect.


2016 ◽  
pp. 4014-4017
Author(s):  
Michael A Persinger

                The value for the Lorentz contraction to produce a discrepancy for a hypothetical number that reflects a property (21.3π4) of sub-matter space was calculated. When applied to time the contraction would be ~35 min. The difference in mass-equivalent energy for an electron at c (the velocity of light in a vacuum) and the required v was ~2 ·10-20 J which has emerged as a significant quantity that may permeate from the force at Planck’s Length when applied across the wavelength of the neutral hydrogen line. Two separate types of photomultiplier instruments (digital and analogue) measuring with different sampling rates for background photon quantities over 50 randomly selected days demonstrated averaged conspicuous inflections of standardized spectral power densities around 35 min. This is the same basic interval where microvariations in the value of the gravitational constant (G) approached a limit at which white noise dominated.  The possibility is considered that this value for temporal inflections in photon power spectral densities may reflect the intrinsic nature of space-time contractions that relate gravity and photons.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Demissie Jobir Gelmecha ◽  
Ram Sewak Singh

AbstractIn this paper, the rigorous derivations of generalized coupled chiral nonlinear Schrödinger equations (CCNLSEs) and their modulation instability analysis have been explored theoretically and computationally. With the consideration of Maxwell’s equations and Post’s constitutive relations, a generalized CCNLSE has been derived, which describes the evolution of left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) components propagating through single-core nonlinear chiral fiber. The analysis of modulation instability in nonlinear chiral fiber has been investigated starting from CCNLSEs. Based on a theoretical model and numerical simulations, the difference on the modulation instability gain spectrum in LCP and RCP components through chiral fiber has been analyzed by considering loss and chirality into account. The obtained simulation results have shown that the loss distorts the sidebands of the modulation instability gain spectrum, while chirality modulates the gain for LCP and RCP components in a different manner. This suggests that adjusting chirality strength may control the loss, and nonlinearity simultaneously provides stable modulated pulse propagation.


Robotica ◽  
2021 ◽  
pp. 1-22
Author(s):  
Limin Shen ◽  
Yuanmei Wen

Abstract Repetitive motion planning (RMP) is important in operating redundant robotic manipulators. In this paper, a new RMP scheme that is based on the pseudoinverse formulation is proposed for redundant robotic manipulators. Such a scheme is derived from the discretization of an existing RMP scheme by utilizing the difference formula. Then, theoretical analysis and results are presented to show the characteristic of the proposed RMP scheme. That is, this scheme possesses the characteristic of cube pattern in the end-effector planning precision. The proposed RMP scheme is further extended and studied for redundant robotic manipulators under joint constraint. Based on a four-link robotic manipulator, simulation results substantiate the effectiveness and superiority of the proposed RMP scheme and its extended one.


NANO ◽  
2009 ◽  
Vol 04 (03) ◽  
pp. 171-176 ◽  
Author(s):  
DAVOOD FATHI ◽  
BEHJAT FOROUZANDEH

This paper introduces a new technique for analyzing the behavior of global interconnects in FPGAs, for nanoscale technologies. Using this new enhanced modeling method, new enhanced accurate expressions for calculating the propagation delay of global interconnects in nano-FPGAs have been derived. In order to verify the proposed model, we have performed the delay simulations in 45 nm, 65 nm, 90 nm, and 130 nm technology nodes, with our modeling method and the conventional Pi-model technique. Then, the results obtained from these two methods have been compared with HSPICE simulation results. The obtained results show a better match in the propagation delay computations for global interconnects between our proposed model and HSPICE simulations, with respect to the conventional techniques such as Pi-model. According to the obtained results, the difference between our model and HSPICE simulations in the mentioned technology nodes is (0.29–22.92)%, whereas this difference is (11.13–38.29)% for another model.


Sign in / Sign up

Export Citation Format

Share Document