scholarly journals Location-Routing Problem of Emergency Facilities under Uncertain Demand by Branch-Price and Cut

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuchen Deng

This paper studies the location-routing problem of emergency facilities with time window under demand uncertainty. We propose a robust mathematical model in which uncertain requirements are represented by two forms: the support set defined by cardinal constraint set. When the demand value of rescue point changes in a given definition set, the model can ensure the feasibility of each line. We propose a branch and price cutting algorithm, whose pricing problem is a robust resource-constrained shortest path problem. In addition, we take the Wenchuan Earthquake as an example to verify the practicability of the method. The robust model is simulated under different uncertainty levels and distributions and compared with the scheme obtained by the deterministic problem. The results show that the robust model can run successfully and maintain its robustness, and the robust model provides better protection against demand uncertainty. In addition, we find that cost is more sensitive to uncertainty level than protection level, and our proposed model also allows controlling the robustness level of the solution by adjusting the protection level. In all experiments, the cost of robustness is that the routing cost increases by an average of 13.87%.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaowen Xiong ◽  
Fan Zhao ◽  
Yundou Wang ◽  
Yapeng Wang

After the earthquake, it is important to ensure the emergency supplies are provided in time. However, not only the timeliness, but also the fairness from different perspectives should be considered. Therefore, we use a multilevel location-routing problem (LPR) to study the fairness of distribution for emergency supplies after earthquake. By comprehensively considering the time window constraints, the partial road damage and dynamic recovery in emergency logistics network, the stochastic driving time of the vehicle, and the mixed load of a variety of emergency materials, we have developed a multiobjective model for the LRP in postearthquake multimodal and fair delivery of multivariety emergency supplies with a limited period. The goal of this model is to minimize the total time in delivering emergency supplies and to minimize the maximum waiting time for emergency supplies to reach demand points. A hybrid heuristic algorithm is designed to solve the model. The example shows that this algorithm has a high efficiency and can effectively realize the supply of emergency supplies after the earthquake within the specified period. This method might be particularly suitable for the emergency rescue scenarios where the victims of the earthquake are vulnerable to mood swings and the emergency supplies need to be fairly distributed.


2021 ◽  
Vol 13 (14) ◽  
pp. 7822
Author(s):  
Andrés Martínez-Reyes ◽  
Carlos L. Quintero-Araújo ◽  
Elyn L. Solano-Charris

The coronavirus disease 2019, known as COVID-19, has generated an imminent necessity for personal protective equipment (PPE) that became essential for all populations and much more for health centers, clinics, hospitals, and intensive care units (ICUs). Considering this fact, one of the main issues for cities’ governments is the distribution of PPE to ICUs to ensure the protection of medical personnel and, therefore, the sustainability of the health system. Aware of this challenge, in this paper, we propose a simheuristic approach for supplying personal protective equipment to intensive care units which is based on the location-routing problem (LRP). The objective is to provide decision makers with a decision support tool that considers uncertain demands, distribution cost, and reliability in the solutions. To validate our approach, a case study in Bogotá, Colombia was analyzed. Computational results show the efficiency of the usage of alternative safety stock policies to face demand uncertainty in terms of both expected stochastic costs and reliabilities.


2015 ◽  
Vol 3 (1) ◽  
pp. 17-36
Author(s):  
Shokoufeh Mirzaei ◽  
Krishna Krishnan ◽  
Bayram Yildrim

Sustainability and energy savings have attracted considerable attention in recent years. However, in the traditional location-routing problem (LRP), the objective function has yet to minimize the distance traveled regardless of the amount of energy consumed. Although, distance is one of the major factors determining the energy consumption of a distribution network, it is not the only factor. Therefore, this paper explains the development of a novel formulation of the LRP that considers energy minimization, which is called the energy-efficient location-routing problem (EELRP). The energy consumed by a vehicle to travel between two nodes in a system depends on many forces. Among those, rolling resistance (RR) and aerodynamic drag are considered in this paper to be the major contributing forces. The presented mixed-integer non-linear program (MINLP) finds the best location-allocation routing plan with the objective function of minimizing total costs, including energy, emissions, and depot establishment. The proposed model can also handle the vehicle-selection problem with respect to a vehicles’ capacity, source of energy, and aerodynamic characteristics. The formulation proposed can also solve the problems with hard and soft time window constraints. Also, the model is enhanced to handle the EELRP with dynamic customers’ demands. Some examples are presented to illustrate the formulations presented in this paper.


2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


Sign in / Sign up

Export Citation Format

Share Document