scholarly journals Numerical Computations for Flow Patterns and Force Statistics of Three Rectangular Cylinders

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hamid Rahman ◽  
Shams-ul-Islam ◽  
Waqas Sarwar Abbasi ◽  
Raheela Manzoor ◽  
Fazle Amin ◽  
...  

In this work, numerical simulations are performed in order to study the effects of aspect ratio (AR) and Reynolds number (Re) on flow characteristics of three side-by-side rectangular cylinders for fixed spacing ratio ( g ), using the lattice Boltzmann method (LBM). The Reynolds number varies within the range 60 ≤ Re ≤ 180, aspect ratio is between 0.25 and 4, and spacing ratio is fixed at g  = 1.5. The flow structure mechanism behind the cylinders is analyzed in terms of vorticity contour visualization, time-trace analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and variations of mean drag coefficient, and Strouhal number. For different combinations of AR and Re, the flow is characterized into regular, irregular, and symmetric vortex shedding. In regular and symmetric vortex shedding the drag and lift coefficients vary smoothly while reverse trend occurs in irregular vortex shedding. At small AR, each cylinder experiences higher magnitude drag force as compared to intermediate and large aspect ratios. The vortex shedding frequency was found to be smaller at smaller AR and increased with increment in AR.

Author(s):  
Hamid Rahman ◽  
Waqas Sarwar Abbasi ◽  
Shams-ul-Islam ◽  
Raees Khan ◽  
Muhammad Uzair Khan

This study focuses on the characteristics of flow past three side-by-side rectangular cylinders under the effect of aspect ratios (AR) and Reynolds numbers (Re) at two different gap ratios ([Formula: see text]) using the lattice Boltzmann method. For this purpose, AR is varied in the range of 0.25–4, the Re values are 100, 140 and 180 and the two different values of [Formula: see text] taken into account are [Formula: see text] and 3. The results are presented in the form of vorticity contours, temporal histories of drag and lift coefficients and power spectrum of lift coefficients. Also, the variation of physical parameters like mean drag coefficient, Strouhal number and the root-mean-square values of drag and lift coefficients with Re and AR is presented for [Formula: see text] and 3. The current numerical computations yield that for both gap ratios and all Re, there exist four different flow regimes depending on AR: (a) steady flow, (b) modulated flow, (c) symmetric flow and (d) periodic flow. At narrow gap ratios, the jet flow emerging within the gaps of cylinders altered the flow structures and fluid forces abruptly. The aspect ratio is found to have more influence on the flow characteristics of cylinders as compared to the Reynolds numbers at large gap ratios.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Haiwang Li ◽  
Yujia Li ◽  
Binghuan Huang ◽  
Tiantong Xu

We conducted systematic numerical investigations of the flow characteristics within the entrance region of rectangular microchannels. The effects of the geometrical aspect ratio and roughness on entrance lengths were analyzed. The incompressible laminar Navier–Stokes equations were solved using finite volume method (FVM). In the simulation, hydraulic diameters ( D h ) ranging from 50 to 200 µm were studied, and aspect ratios of 1, 1.25, 1.5, 1.75, and 2 were considered as well. The working fluid was set as water, and the Reynolds number ranged from 0.5 to 100. The results showed a good agreement with the conducted experiment. Correlations are proposed to predict the entrance lengths of microchannels with respect to different aspect ratios. Compared with other correlations, these new correlations are more reliable because a more practical inlet condition was considered in our investigations. Instead of considering the influence of the width and height of the microchannels, in our investigation we proved that the critical role is played by the aspect ratio, representing the combination of the aforementioned parameters. Furthermore, the existence of rough elements obviously shortens the entrance region, and this effect became more pronounced with increasing relative roughness and Reynolds number. A similar effect could be seen by shortening the roughness spacing. An asymmetric distribution of rough elements decreased the entrance length compared with a symmetric distribution, which can be extrapolated to other irregularly distributed forms.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
J. F. McClean ◽  
D. Sumner

The flow around a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re = 7.3 × 104 for prism aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles from α = 0 deg to 45 deg. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the mean drag coefficient and Strouhal number were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The mean drag coefficient and Strouhal number for the finite prism were less sensitive to changes in incidence angle compared to the infinite square prism. The critical incidence angle, corresponding to minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number, shifted to a higher incidence angle compared to the infinite square prism, with values ranging from αcritical = 15 deg to 18 deg; this shift was greatest for the prisms of higher aspect ratio. The behavior of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of mean drag coefficient and mean lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0 deg and 15 deg. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30 deg and 45 deg, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


Author(s):  
John F. McClean ◽  
David Sumner

The flow around a surface-mounted square prism of finite height was investigated experimentally using a low-speed wind tunnel. Of interest were the effects of aspect ratio and incidence angle on the mean aerodynamic forces and vortex shedding. Compared to the case of the “infinite” (or two-dimensional) square prism, the flow around the finite square prism has not been extensively studied. The experiments were conducted at a Reynolds number of Re = 7.2 × 104 for aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles of α = 0°, 15°, 30° and 45°. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe in the wake, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the Strouhal number and the mean drag coefficient were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The behaviours of the mean drag coefficient and Strouhal number with incidence angle were less sensitive compared to the case of the infinite square prism, although a minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number were found at α = 15°. The reduced sensitivity to incidence angle is attributed to the complex three-dimensional flow over the free end of the prism and the downwash flow that enters the near wake. The behaviour of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of drag coefficient and lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0° and 15°. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30° and 45°, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


Author(s):  
Iis Rohmawati ◽  
Hiroshi Arai ◽  
Hidemi Mutsuda ◽  
Takuji Nakashima ◽  
Rizal Mahmud

Experimental and numerical research have been performed to investigate the Wavy Leading Edge (WLE) effect on the rectangular wing. The WLE is inspired by humpback whale flipper morphology which is blunt and rounded in certain form pattern. This flipper shape plays an important role for its behaviour specially capturing their prey. This advantage could be applied to other systems such as fin stabilizers or wind turbines. Steady cases in various aspect ratios were conducted to find out the optimum effect of WLE with baseline NACA 0018 profile at Reynolds number 1.4 x 105. The chord length of the wing (c) was 125 mm. The WLE shape defined as wavelength (W) 8% of c and amplitude (d) is 5% of c. The aspect ratio (AR) variations were 1.6; 3.9; 5.1; 7.9 and 9.6.  A simple rectangular form of the wing was selected to analysis the WLE effect on the various ARs. The taper wing shape is applied to find out the WLE effect at the AR 7.9. three types of taper ratio (TR) are 0.1; 0.3 and 0.5. The results show that the WLE on the taper wing has better advantage to control the stall in steady case. Another impressive result was the WLE wing with AR 7.9 and TR 0.3 has the best lift coefficient and pressure distribution.Keywords: stall, wavy leading edge, steady case, rectangle wing, taper wing, aspect ratio. 


2019 ◽  
Vol 30 (02n03) ◽  
pp. 1950015 ◽  
Author(s):  
Salwa Fezai ◽  
Fakher Oueslati ◽  
Nader Ben-Cheikh ◽  
Brahim Ben-Beya

Two-dimensional incompressible fluid flows around square cylinders at different arrangements have been numerically analyzed in the present work. The calculations are carried out for several values of Reynolds number (Re) ranging from 20 to 180. The results are presented in the form of vorticity contours and temporal histories of drag and lift coefficients. Besides, the physical parameters, namely, the average drag and lift coefficients and Strouhal number, are evaluated as a function of Re. Two different states of flow are predicted in the current investigation by systematically varying Re for steady and unsteady regimes. Vortex shedding is studied at different arrangements of the square cylinders allowing the investigation of three possible configurations. Special attention is paid to compute the drag and lift forces acting on the different obstacles, which allowed determining the optimal configuration in terms of both drags and lifts. The unsteady periodic wake is characterized by the Strouhal number, which varies with the Reynolds number and the obstacle geometry. The values of vortex shedding frequencies are consequently calculated in this study.


Author(s):  
Jie Wu ◽  
Halvor Lie ◽  
Yiannis Constantinides ◽  
Rolf J. Baarholm

The Norwegian Deepwater Program (NDP) has over several years working on conceptual development and design of new steel riser solutions for deep water and harsh environment. For the steel lazy wave riser (SLWR) design, the buoyancy section is a critical segment. When subjected to current, both the buoyancy elements and the riser may experience vortex induced vibrations (VIV), which can lead to fast accumulation of fatigue damage and amplified drag loads. As part of developing robust SLWR, it is crucial to understand the current induced loads and responses on various staggered buoyancy configurations. In order to investigate the interaction of bare pipe section and buoyancy elements and its effect on VIV, hydrodynamic model tests were carried out in MARINTEK’s ocean basin in 2014. The test pipe is 38 m in length and 3 cm in diameter. The length of each buoyancy element 0.15 m and its diameter is 0.15 m. The ratio between buoyancy element diameter and riser diameter is 5. VIV response may depend on the spacing ratio of the length of the buoyancy segments and the gaps between two adjacent buoyancy elements, aspect ratio of the buoyancy element, and coverage percentage of buoyancy elements. Hence these parameters were varied and 6 different staggered buoyancy configurations were tested in uniform flows. The use of strakes to suppress VIV was also evaluated. The primary objective is to determine a range for these parameters that leads to the smallest VIV curvature (and hence an optimal riser fatigue design). The shedding frequency of the bare riser section is significantly higher than the buoyancy element due to its smaller diameter. Therefore, the bare riser section will excite much higher modes. As observed from the present tests, the fatigue damage is dominated by the bare riser component for all of the test configurations. The CF displacement of cases with the highest buoyancy coverage (50%) is often dominated by the vortex shedding of the buoyancy element. The use of stakes can effectively suppress the vortex shedding and leads to lowest fatigue damage in the test. In addition, the non-dimensional frequency of the buoyancy element is low (about 0.087–0.122) due to its small aspect ratios (1/1 and 2/1) in present tests. The vortex shedding of the buoyancy element seems to be weakened when the spacing ratio is larger than 1/1, which is different than earlier tests using buoyancy element with larger aspect ratio (≥5/1). The impact on the SLWR design is evaluated based on both present and other relevant model tests results.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Sign in / Sign up

Export Citation Format

Share Document