scholarly journals Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Talal S. Qaid ◽  
Hussein Mazaar ◽  
Mohammad Yahya H. Al-Shamri ◽  
Mohammed S. Alqahtani ◽  
Abeer A. Raweh ◽  
...  

The COVID-19 pandemic has had a significant impact on public life and health worldwide, putting the world’s healthcare systems at risk. The first step in stopping this outbreak is to detect the infection in its early stages, which will relieve the risk, control the outbreak’s spread, and restore full functionality to the world’s healthcare systems. Currently, PCR is the most prevalent diagnosis tool for COVID-19. However, chest X-ray images may play an essential role in detecting this disease, as they are successful for many other viral pneumonia diseases. Unfortunately, there are common features between COVID-19 and other viral pneumonia, and hence manual differentiation between them seems to be a critical problem and needs the aid of artificial intelligence. This research employs deep- and transfer-learning techniques to develop accurate, general, and robust models for detecting COVID-19. The developed models utilize either convolutional neural networks or transfer-learning models or hybridize them with powerful machine-learning techniques to exploit their full potential. For experimentation, we applied the proposed models to two data sets: the COVID-19 Radiography Database from Kaggle and a local data set from Asir Hospital, Abha, Saudi Arabia. The proposed models achieved promising results in detecting COVID-19 cases and discriminating them from normal and other viral pneumonia with excellent accuracy. The hybrid models extracted features from the flatten layer or the first hidden layer of the neural network and then fed these features into a classification algorithm. This approach enhanced the results further to full accuracy for binary COVID-19 classification and 97.8% for multiclass classification.

Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, bag of bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


2018 ◽  
Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, Bag of Bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


2018 ◽  
Author(s):  
Daniel Elton ◽  
Zois Boukouvalas ◽  
Mark S. Butrico ◽  
Mark D. Fuge ◽  
Peter W. Chung

We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, bag of bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.


2020 ◽  
Vol 3 (2) ◽  
pp. 20 ◽  
Author(s):  
Aliyu Abubakar ◽  
Mohammed Ajuji ◽  
Ibrahim Usman Yahya

While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use transfer learning by leveraging pre-trained deep learning models due to deficient dataset in this paper, to discriminate two classes of skin injuries—burnt skin and injured skin. Experiments were extensively conducted using three state-of-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies—fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy in categorizing burnt skin ad injured skin of approximately 99.9%.


Author(s):  
Aliyu Abubakar ◽  
Mohammed Ajuji ◽  
Ibrahim Usman Yahya

While visual assessment is the standard technique for burn evaluation, computer-aided diagnosis is increasingly sought due to high number of incidences globally. Patients are increasingly facing challenges which are not limited to shortage of experienced clinicians, lack of accessibility to healthcare facilities, and high diagnostic cost. Certain number of studies were proposed in discriminating burn and healthy skin using machine learning leaving a huge and important gap unaddressed; whether burns and related skin injuries can be effectively discriminated using machine learning techniques. Therefore, we specifically use pre-trained deep learning models due to deficient dataset to train a new model from scratch. Experiments were extensively conducted using three state-of-the-art pre-trained deep learning models that includes ResNet50, ResNet101 and ResNet152 for image patterns extraction via two transfer learning strategies: fine-tuning approach where dense and classification layers were modified and trained with features extracted by base layers, and in the second approach support vector machine (SVM) was used to replace top-layers of the pre-trained models, trained using off-the-shelf features from the base layers. Our proposed approach records near perfect classification accuracy of approximately 99.9%.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2021 ◽  
Vol 11 (3) ◽  
pp. 1323
Author(s):  
Medard Edmund Mswahili ◽  
Min-Jeong Lee ◽  
Gati Lother Martin ◽  
Junghyun Kim ◽  
Paul Kim ◽  
...  

Cocrystals are of much interest in industrial application as well as academic research, and screening of suitable coformers for active pharmaceutical ingredients is the most crucial and challenging step in cocrystal development. Recently, machine learning techniques are attracting researchers in many fields including pharmaceutical research such as quantitative structure-activity/property relationship. In this paper, we develop machine learning models to predict cocrystal formation. We extract descriptor values from simplified molecular-input line-entry system (SMILES) of compounds and compare the machine learning models by experiments with our collected data of 1476 instances. As a result, we found that artificial neural network shows great potential as it has the best accuracy, sensitivity, and F1 score. We also found that the model achieved comparable performance with about half of the descriptors chosen by feature selection algorithms. We believe that this will contribute to faster and more accurate cocrystal development.


2021 ◽  
pp. 155005942110608
Author(s):  
Jakša Vukojević ◽  
Damir Mulc ◽  
Ivana Kinder ◽  
Eda Jovičić ◽  
Krešimir Friganović ◽  
...  

In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Sign in / Sign up

Export Citation Format

Share Document