scholarly journals Model for Describing Emission Characteristics of Electron-Beam Evaporation Sources

1979 ◽  
Vol 6 (1) ◽  
pp. 9-12
Author(s):  
Miklós Szilágyi

The experimental data for the anistropic component of the angular distribution of electron-beam evaporation sources are usually described in terms of thecosnθdependence. In this paper a simple model for calculating angular distributions is presented. The generally used dependence appears as a particular case in the model.

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Alexandre Gumberidze ◽  
Daniel B. Thorn ◽  
Andrey Surzhykov ◽  
Christopher J. Fontes ◽  
Dariusz Banaś ◽  
...  

In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.


1986 ◽  
Vol 74 ◽  
Author(s):  
D. Y. Loi ◽  
M. H. Shapiro ◽  
T. A. Tombrello ◽  
B. J. Garrison ◽  
N. Winograd

AbstractMultiple interaction computer simulations have been used to determine the properties of collision cascades in liquid In targets induced by normally incident 5 keV Ar+ ions. Below the first atomic layer the cascade becomes Thompson-like relatively quickly. However, within the first atomic layer the angular distribution of moving atoms became forward peaked by 150 fs and remained so until,∼300 fs. Energy and angle resolved (EARN) spectra were calculated for the ejected atoms. The peak of the energy distribution shifted to lower energies at larger ejection angles, and the angular distributions became broader for lower energy particles. Both results agree with recent experimental data, and with a simple model proposed bg Garrison. Our results suggest that the detailed structure of the surface layer is very important in the sputtering process.


2003 ◽  
Vol 777 ◽  
Author(s):  
J.S. Romero ◽  
A.G. Fitzgerald

AbstractCopper migration is observed in the SEM in amorphous GeSe2/Cu thin films when an electron beam is focused in pulsed or continuous operation on the surface of these thin films. The phenomenon can be explained using a simple model in which the population of D- centers is considered to increase upon electron irradiation. The increase in the D- center population is envisaged as due to the breaking of bonds by the electron radiation and by the constant presence of negative charge in irradiated regions. Changes in copper concentration of 20%-30% have been obtained. Additionally we have observed the local crystallization of amorphous GeSe2/Cu thin films in the TEM when the samples were subjected to intense electron bombardment. The crystalline product has been identified as Berzelianite (Cu2Se).


1986 ◽  
Vol 41 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
M. Frank ◽  
F. Gubitz ◽  
W. Ittner ◽  
W. Kreische ◽  
A. Labahn ◽  
...  

The 19F quadrupole coupling constants in CF4, CHF3, CClF3 and CHClF2 are reported. The measurements were carried out temperature dependent using the time differential perturbed angular distribution method (TDPAD). The temperature dependence can be satisfactorily described in the framework of the Bayer-Kushida theory. A simple model is used to explain the appearance of H-F and Cl-F coupling constants in CHF3/CHClF2 and CClF3, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


1985 ◽  
Vol 131 (3-4) ◽  
pp. 261-266 ◽  
Author(s):  
M. Denhoff ◽  
B. Heinrich ◽  
A.E. Curzon ◽  
S. Gygax

2007 ◽  
Vol 201 (13) ◽  
pp. 6078-6083 ◽  
Author(s):  
C. Rebholz ◽  
M.A. Monclus ◽  
M.A. Baker ◽  
P.H. Mayrhofer ◽  
P.N. Gibson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document