scholarly journals Objective Clustering of Proteins Based on Subcellular Location Patterns

2005 ◽  
Vol 2005 (2) ◽  
pp. 87-95 ◽  
Author(s):  
Xiang Chen ◽  
Robert F. Murphy

The goal of proteomics is the complete characterization of all proteins. Efforts to characterize subcellular location have been limited to assigning proteins to general categories of organelles. We have previously designed numerical features to describe location patterns in microscope images and developed automated classifiers that distinguish major subcellular patterns with high accuracy (including patterns not distinguishable by visual examination). The results suggest the feasibility of automatically determining which proteins share a single location pattern in a given cell type. We describe an automated method that selects the best feature set to describe images for a given collection of proteins and constructs an effective partitioning of the proteins by location. An example for a limited protein set is presented. As additional data become available, this approach can produce for the first time an objective systematics for protein location and provide an important starting point for discovering sequence motifs that determine localization.

2007 ◽  
Vol 62 (11-12) ◽  
pp. 779-785 ◽  
Author(s):  
Florian Stintzing ◽  
Willibald Schliemann

The complex pigment pattern of fly agaric (Amanita muscaria) cap skins has been studied by LC-DAD and mass spectrometry. Among the betaxanthins the corresponding derivatives of serine, threonine, ethanolamine, alanine, Dopa, phenylalanine and tryptophan are reported for the first time to contribute to the pigment pattern of fly agarics. Betalamic acid, the chromophoric precursor of betaxanthins and betacyanins, muscaflavin and seco-dopas were also detected. Furthermore, the red-purple muscapurpurin and the red muscarubrin were tentatively assigned while further six betacyanin-like components could not be structurally allocated. Stability studies indicated a high susceptibility of pigment extracts to degradation which led to rapid colour loss thus rendering a complete characterization of betacyaninlike compounds impossible at present. Taking into account these difficulties the presented results may be a starting point for a comprehensive characterization of the pigment composition of fly agarics.


2019 ◽  
Vol 10 ◽  
pp. 459-466 ◽  
Author(s):  
Anna J Schulte ◽  
Matthias Mail ◽  
Lisa A Hahn ◽  
Wilhelm Barthlott

Angiosperms and their pollinators are adapted in a close co-evolution. For both the plants and pollinators, the functioning of the visual signaling system is highly relevant for survival. As the frequency range of visual perception in many insects extends into the ultraviolet (UV) region, UV-patterns of plants play an important role in the flower–pollinator interaction. It is well known that many flowers contain UV-absorbing pigments in their petal cells, which are localized in vacuoles. However, the contribution of the petal surface microarchitecture to UV-reflection remains uncertain. The correlation between the surface structure and its reflective properties is also relevant for biomimetic applications, for example, in the field of photovoltaics. Based on previous work, we selected three model species with distinct UV-patterns to explore the possible contribution of the surface architecture to the UV-signaling. Using a replication technique, we transferred the petal surface structure onto a transparent polymer. Upon illumination with UV-light, we observed structural-based patterns in the replicas that were surprisingly comparable to those of the original petals. For the first time, this experiment has shown that the parameters of the surface structure lead to an enhancement in the amount of absorbed UV-radiation. Spectrophotometric measurements revealed up to 50% less reflection in the UV-absorbing regions than in the UV-reflecting areas. A comparative characterization of the micromorphology of the UV-reflecting and UV-absorbing areas showed that, in principle, a hierarchical surface structure results in more absorption. Therefore, the results of our experiments demonstrate the structural-based amplification of UV-reflection and provide a starting point for the design of bioinspired antireflective and respectively strongly absorbing surfaces.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 936
Author(s):  
Al-Sayed Al-Soudy ◽  
Valeria Maselli ◽  
Stefania Galdiero ◽  
Michael J. Kuba ◽  
Gianluca Polese ◽  
...  

In their foraging behavior octopuses rely on arm search movements outside the visual field of the eyes. In these movements the environment is explored primarily by the suckers that line the entire length of the octopus arm. In this study, for the first time, we report the complete characterization of a light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. Furthermore, we found differences in relative mRNA expression in different sucker types at several arm levels, and localized it through in situ hybridization. Our findings suggest that the suckers in octopus arms are much more multimodal than was previously shown, adding the potential for light sensing to the already known mechanical and chemical sensing abilities.


Author(s):  
James Arena ◽  
Bruce F. McEwen ◽  
Min Ja Song ◽  
William J. Landis

Complete characterization of the inorganic and organic interaction in calcifying tissues is fundamental to understanding their structure-function relations. In this context, high resolution tomographic three-dimensional (3D) reconstruction of normally calcifying avian tendon imaged by high voltage electron microscopy has recently been used to determine specific structural features of hydroxyapatite crystals associated with collagen fibrils in this vertebrate model of biological mineralization. The present work is an extension of these previous investigations, now applied to bone for the first time.


2015 ◽  
Vol 68 (10) ◽  
pp. 1583 ◽  
Author(s):  
Andrew M. Beekman ◽  
Russell A. Barrow

The syntheses of the fungal metabolites cytosporones A, (±)-C, and N are reported. And the syntheses of cytosporones J and K are described for the first time. The preparation of racemic cytosporone J and racemic cytosporone K, natural products containing the rare 3-isochromanone substructure, was achieved in 8 linear steps with an overall yield of 45 % and 7 linear steps in 46 % yield, respectively, resulting in the complete characterization of these compounds for the first time. The key steps included a recently described homologation of benzoic acid to the analogous phenyl acetate using Birch reductive alkylation conditions, acylation of the appropriate phenyl acetate derivative, and a selective reduction and spontaneous biomimetic lactonization to yield the 3-isochromanone skeleton. The synthesized natural products were evaluated for their biological activity against several clinical strains of human pathogens with all compounds displaying weak antimicrobial activity.


2004 ◽  
Vol 70 (3) ◽  
pp. 1315-1320 ◽  
Author(s):  
Joseph R. Graber ◽  
Jared R. Leadbetter ◽  
John A. Breznak

ABSTRACT Long after their original discovery, termite gut spirochetes were recently isolated in pure culture for the first time. They revealed metabolic capabilities hitherto unknown in the Spirochaetes division of the Bacteria, i.e., H2 plus CO2 acetogenesis (J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283:686-689, 1999) and dinitrogen fixation (T. G. Lilburn, K. S. Kim, N. E. Ostrom, K. R. Byzek, J. R. Leadbetter, and J. A. Breznak, Science 292:2495-2498, 2001). However, application of specific epithets to the strains isolated (Treponema strains ZAS-1, ZAS-2, and ZAS-9) was postponed pending a more complete characterization of their phenotypic properties. Here we describe the major properties of strain ZAS-9, which is readily distinguished from strains ZAS-1 and ZAS-2 by its shorter mean cell wavelength or body pitch (1.1 versus 2.3 μm), by its nonhomoacetogenic fermentation of carbohydrates to acetate, ethanol, H2, and CO2, and by 7 to 8% dissimilarity between its 16S rRNA sequence and those of ZAS-1 and ZAS-2. Strain ZAS-9 is proposed as the type strain of the new species, Treponema azotonutricium. Strains ZAS-1 and ZAS-2, which are H2-consuming, CO2-reducing homoacetogens, are proposed here to be two strains of the new species Treponema primitia. Apart from the salient differences mentioned above, the genomes of all three strains were similar in size (3,461 to 3,901 kb), in G+C content (50.0 to 51.0 mol%), and in possession of 2 copies of the gene encoding 16S rRNA (rrs). For comparison, the genome of the free-living spirochete Spirochaeta aurantia strain J1 was analyzed by the same methods and found to have a size of 3,719 kb, to contain 65.6 mol% G+C, and also to possess 2 copies of the rrs gene.


Reactions ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 59-69
Author(s):  
Natalie M. Lind ◽  
Natalie S. Joe ◽  
Brian S. Newell ◽  
Aimee M. Morris

Synthetic access to poly(indazolyl)methanes has limited their study despite their structural similarity to the highly investigated chelating poly(pyrazolyl)methanes and their potentially important indazole moiety. Herein is presented a high yielding, one-pot synthesis for the 3d-metal catalyzed formation of bis(1H-indazol-1-yl)methane from 1H-indazole utilizing dimethylsulfoxide as the methylene source. Complete characterization of bis(1H-indazol-1-yl)methane is given with 1H and 13C NMR, UV/Vis, FTIR, high resolution mass spectrometry and for the first time, single crystal X-ray diffraction. This simple, inexpensive pathway to yield exclusively bis(1H-indazol-1-yl)methane provides synthetic access to further investigate the coordination and potential applications of the family of bis(indazolyl)methanes.


1992 ◽  
Vol 242 ◽  
Author(s):  
D. A. Redman ◽  
Q. Shu ◽  
S. W. Brown ◽  
A. Lenef ◽  
Y. Lrj ◽  
...  

ABSTRACTWe report an essentially complete characterization of energies and relaxation processes of the lowest seven electronic states of the N-V (nitrogen-vacancy) center in diamond using several different nonlinear laser spectroscopie techniques. We have also applied ultrafast optical techniques to measure dielectric properties of CVD and bulk diamond in the 0.3–1.6 THz range for the first time.


Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Sign in / Sign up

Export Citation Format

Share Document