scholarly journals Synthesis and Antifungal Activity of Metal Complexes Containing Dichloro-Tetramorpholino-Cyclophosphazatriene

1998 ◽  
Vol 5 (5) ◽  
pp. 287-294 ◽  
Author(s):  
Cornelia Guran ◽  
Mihai Barboiu ◽  
Paula Diaconescu ◽  
Vlad Iluc ◽  
Mihaela Bojin ◽  
...  

Metal complexes of dichloro-tetramorpholino-cyclophosphazatriene containing divalent cations such as Ni(II), Co(II), and Mn(II) have been prepared and characterised by standard physico-chemical procedures (elemental chemical analysis, IR and UV-VIS spectra, conductimetric measurement). The newly synthesised compounds possessed antifungal activity against Aspergillus and Candida spp., some of them showing effects comparable to ketoconazole (with minimum inhibitory concentrations in the range of 2- 30 μg/mL) but being generally less active as compared to the azole. Best activity was detected against C. albicans, and worst activity against A. niger. The mechanism of action of these compounds probably involves inhibition of ergosterol biosynthesis, and interaction with lanosterol-14-α-demethylase (CYP51A1), since reduced amounts of ergosterol were evidenced by means of HPLC in cultures of the sensitive strain A. niger treated with some of these inhibitors.

2005 ◽  
Vol 70 (8-9) ◽  
pp. 1049-1056 ◽  
Author(s):  
Luminita Patron ◽  
Oana Carp ◽  
Ioana Mindru ◽  
Gabriela Marinescu ◽  
Nicolae Stanica ◽  
...  

Anew type of complexes compounds (NH4)6[M3Fe5(C4O5H4)6(C4O5H3)6]. 16H2O (where M(III) = Y, Eu, Gd, Er), (NH4)6[M3Fe5(C4O6H4)6(C4O6H3)6]. 16H2O (where M(III) = Gd, Er) and (NH4)6[M3Fe5(C6O7H10)6(C6O7H9)6]. xH2O (where M(III) = Y; x = 8; M(III) = Eu, Er; x = 22) [C4O5H4 2? = malate anion C4O6H42? = tartarate anion, C6O7H11 ? = gluconate anion_ have been synthesized and characterised by elemental chemical analysis and physico-chemical measurements (IR, UV-Vis spectroscopy and magnetic determinations). The synthetic possibilities offered by the use of these new compounds as potential precursors for garnets have been suggested.


1970 ◽  
Vol 46 (3) ◽  
pp. 365-368 ◽  
Author(s):  
MA Akbor ◽  
MS Islam ◽  
N Akhter ◽  
S Ahmed ◽  
S Siraj

Mixed ligand (diphenic/ adipic as primary Ligand and quinoline / 8 - hydroxyquinoline as secondary) transition metal complexes of Cobalt (II), Cupper (II), Rhodium (III) and Platinum (IV) ions were synthesized and characterized. Their antibacterial activities against ten bacteria had been evaluated by the disc diffusion method,whilst their antifungal activities against two fungi had been also evaluated by the same method. Minimum inhibitory concentrations (MIC) had been evaluated against six bacteria. The MIC of the complexes against Shigella dysenteriae, Samonella typhi, Streptococcus-β-haemolyticus and Bacillus megaterium were 32 μg/ml; whilst Escherichia coli and Samonella typhi-A the MIC of Co (II) and Pt (IV) were 32μg/ml and those of Cu(II) and Rh(III) complexes were 64 μg/ml. It was found that Cobalt (II), Cupper (II) & Rhodium (III) complexes had pronounced antibacterial and antifungal activities. Platinum (IV) complex had moderate antibacterial and antifungal activity. These values indicate that these are active compounds. Key words: Mixed Ligand; Transition metal; Antimicrobial Activity; Antifungal Activity Minimum Inhibitory Concentrations (MIC) DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9044 BJSIR 2011; 46(3): 365-368


1996 ◽  
Vol 3 (5) ◽  
pp. 227-232 ◽  
Author(s):  
Mihai Barboiu ◽  
Marilena Cimpoesu ◽  
Cornelia Guran ◽  
Claudiu T. Supuran

Metal complexes of the title ligand (L) containing Co(II), Ni(II) and Cu(II) were prepared and characterized by elemental analysis, IR, electronic spectroscopy and conductimetry. The new derivatives, possessing the following formulae, CuL2(OH)2, NiL2Cl2, and [Co2LCl4]n showed in vitro antifungal activity against Aspergillus and Candida spp.


Author(s):  
Letícia S. Sampaio ◽  
Cecília R. da Silva ◽  
Rosana S. Campos ◽  
Francisca B.S.A. do Nascimento ◽  
João B.A. Neto ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 419
Author(s):  
Yunierkis Perez-Castillo ◽  
Ricardo Carneiro Montes ◽  
Cecília Rocha da Silva ◽  
João Batista de Andrade Neto ◽  
Celidarque da Silva Dias ◽  
...  

Fungal infections remain a high-incidence worldwide health problem that is aggravated by limited therapeutic options and the emergence of drug-resistant strains. Cinnamic and benzoic acid amides have previously shown bioactivity against different species belonging to the Candida genus. Here, 20 cinnamic and benzoic acid amides were synthesized and tested for inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019. Five compounds inhibited the Candida strains tested, with compound 16 (MIC = 7.8 µg/mL) producing stronger antifungal activity than fluconazole (MIC = 16 µg/mL) against C. krusei ATCC 14243. It was also tested against eight Candida strains, including five clinical strains resistant to fluconazole, and showed an inhibitory effect against all strains tested (MIC = 85.3–341.3 µg/mL). The MIC value against C. krusei ATCC 6258 was 85.3 mcg/mL, while against C. krusei ATCC 14243, it was 10.9 times smaller. This strain had greater sensitivity to the antifungal action of compound 16. The inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019 was also achieved by compounds 2, 9, 12, 14 and 15. Computational experiments combining target fishing, molecular docking and molecular dynamics simulations were performed to study the potential mechanism of action of compound 16 against C. krusei. From these, a multi-target mechanism of action is proposed for this compound that involves proteins related to critical cellular processes such as the redox balance, kinases-mediated signaling, protein folding and cell wall synthesis. The modeling results might guide future experiments focusing on the wet-lab investigation of the mechanism of action of this series of compounds, as well as on the optimization of their inhibitory potency.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7208
Author(s):  
Jürgen Krauß ◽  
Christoph Müller ◽  
Monika Klimt ◽  
Leandro Jorquera Valero ◽  
José Francisco Martínez ◽  
...  

The aliphatic heterocycles piperidine and morpholine are core structures of well-known antifungals such as fenpropidin and fenpropimorph, commonly used as agrofungicides, and the related morpholine amorolfine is approved for the treatment of dermal mycoses in humans. Inspired by these lead structures, we describe here the synthesis and biological evaluation of 4-aminopiperidines as a novel chemotype of antifungals with remarkable antifungal activity. A library of more than 30 4-aminopiperidines was synthesized, starting from N-substituted 4-piperidone derivatives by reductive amination with appropriate amines using sodium triacetoxyborohydride. Antifungal activity was determined on the model strain Yarrowia lipolytica, and some compounds showed interesting growth-inhibiting activity. These compounds were tested on 20 clinically relevant fungal isolates (Aspergillus spp., Candida spp., Mucormycetes) by standardized microbroth dilution assays. Two of the six compounds, 1-benzyl-N-dodecylpiperidin-4-amine and N-dodecyl-1-phenethylpiperidin-4-amine, were identified as promising candidates for further development based on their in vitro antifungal activity against Candida spp. and Aspergillus spp. Antifungal activity was determined for 18 Aspergillus spp. and 19 Candida spp., and their impact on ergosterol and cholesterol biosynthesis was determined. Toxicity was determined on HL-60, HUVEC, and MCF10A cells, and in the alternative in vivo model Galleria mellonella. Analysis of sterol patterns after incubation gave valuable insights into the putative molecular mechanism of action, indicating inhibition of the enzymes sterol C14-reductase and sterol C8-isomerase in fungal ergosterol biosynthesis.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 394
Author(s):  
Mayara Nunes Vitor Anjos ◽  
Luiz Nascimento de Araújo-Neto ◽  
Maria Daniela Silva Buonafina ◽  
Rejane Pereira Neves ◽  
Edson Rubhens de Souza ◽  
...  

Background: Opportunistic fungal infections are increasingly common, with Candida albicans being the most common etiological agent; however, in recent years, episodes of candidiasis caused by non-albicans Candida species have emerged. Plants belonging to the Lauraceae family have shown remarkable antifungal effects. This study assessed the anti-Candida activity of Ocotea glomerata extracts and fractions, time of death and the synergistic effects with conventional antifungals. The possible mechanism of action was also addressed. Methods: Minimal inhibitory concentrations (MIC) were determined by broth microdilution technique, and the mechanism of action was assessed by ergosterol, sorbitol, cell viability, reactive oxygen species (ROS) generation and phosphatidylserine externalization tests. Results: All the tested extracts evidenced antifungal activity, but the methanol extract was revealed to be the most effective (MIC = 3.12 μg/mL) on C. krusei. The combination of methanol extract with ketoconazole and fluconazole revealed a synergistic effect for C. krusei and C. albicans, respectively. Fractions 1 and 5 obtained from the methanol extract had fungicidal activity, mainly against C. krusei. Methanol extract did not reveal effects by ergosterol and sorbitol assays; however, it led to an increase in intracellular ROS levels, decreased cell viability, and consequently, cell death. Conclusion: O. glomerata methanol extract may be viewed as a rich source of biomolecules with antifungal activity against Candida spp.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 102
Author(s):  
Matthew Jamison ◽  
Xiao Wang ◽  
Tina Cheng ◽  
Tadeusz Molinski

Bengazoles A–G from the marine sponge Jaspis sp. exhibit potent in vitro antifungal activity against Candida spp. and other pathogenic fungi. The mechanism of action (MOA) of bengazole A was explored in Candida albicans under both liquid culture and surface culture on Mueller-Hinton agar. Pronounced dose-dependent synergistic antifungal activity was observed with bengazole A in the presence of bengamide A, which is also a natural product from Jaspis sp. The MOA of bengazole A was further explored by monitoring the sterol composition of C. albicans in the presence of sub-lethal concentrations of bengazole A. The GCMS of solvent extracts prepared from liquid cultures of C. albicans in the presence of clotrimazole―a clinically approved azole antifungal drug that suppresses ergosterol biosynthesis by the inhibition of 14α-demethylase―showed reduced cellular ergosterol content and increased concentrations of lanosterol and 24-methylenedihydrolanosterol (a shunt metabolite of ergosterol biosynthesis). No change in relative sterol composition was observed when C. albicans was cultured with bengazole A. These results eliminate an azole-like MOA for the bengazoles, and suggest that another as-yet unidentified mechanism is operative.


2000 ◽  
Vol 7 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Antonio Mastrolorenzo ◽  
Claudiu T. Supuran

Reaction of sulfacetamide with arylsulfonyl isocyanates afforded a series of derivatives which were used as ligands (as conjugate bases) for the preparation of metal complexes containing Ag(I) and Zn(II). The newly synthesized complexes, unlike the free ligands, act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3 – 0.5 μg/mL. The mechanism of antifungal action of these complexes seems to be not connected with the inhibition of lanosterol-14-α-demethylase, since the levels of sterols assessed in the fungi cultures were equal in the absence or in the presence of the tested compounds. Probably the new complexes act as inhibitors of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls.


Sign in / Sign up

Export Citation Format

Share Document