scholarly journals Cauchy's interlace theorem and lower bounds for the spectral radius

2000 ◽  
Vol 23 (8) ◽  
pp. 563-566 ◽  
Author(s):  
A. McD. Mercer ◽  
Peter R. Mercer

We present a short and simple proof of the well-known Cauchy interlace theorem. We use the theorem to improve some lower bound estimates for the spectral radius of a real symmetric matrix.

2017 ◽  
Vol 38 (8) ◽  
pp. 3012-3041 ◽  
Author(s):  
MORITZ GERLACH ◽  
JOCHEN GLÜCK

If $(T_{t})$ is a semigroup of Markov operators on an $L^{1}$-space that admits a non-trivial lower bound, then a well-known theorem of Lasota and Yorke asserts that the semigroup is strongly convergent as $t\rightarrow \infty$. In this article we generalize and improve this result in several respects. First, we give a new and very simple proof for the fact that the same conclusion also holds if the semigroup is merely assumed to be bounded instead of Markov. As a main result, we then prove a version of this theorem for semigroups which only admit certain individual lower bounds. Moreover, we generalize a theorem of Ding on semigroups of Frobenius–Perron operators. We also demonstrate how our results can be adapted to the setting of general Banach lattices and we give some counterexamples to show optimality of our results. Our methods combine some rather concrete estimates and approximation arguments with abstract functional analytical tools. One of these tools is a theorem which relates the convergence of a time-continuous operator semigroup to the convergence of embedded discrete semigroups.


10.37236/6644 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Liying Kang ◽  
Lele Liu ◽  
Erfang Shan

Let $\mathcal{A}(H)$ and $\mathcal{Q}(H)$ be the adjacency tensor and signless Laplacian tensor of an $r$-uniform hypergraph $H$. Denote by $\rho(H)$ and $\rho(\mathcal{Q}(H))$ the spectral radii of $\mathcal{A}(H)$ and $\mathcal{Q}(H)$, respectively. In this paper we present a  lower bound on $\rho(H)$ in terms of vertex degrees and we characterize the extremal hypergraphs attaining the bound, which solves a problem posed by Nikiforov [Analytic methods for uniform hypergraphs, Linear Algebra Appl. 457 (2014) 455–535]. Also, we prove a lower bound on $\rho(\mathcal{Q}(H))$ concerning degrees and give a characterization of the extremal hypergraphs attaining the bound.


Author(s):  
V. I. Benediktovich

An algebraic parameter of a graph – a difference between its maximum degree and its spectral radius is considered in this paper. It is well known that this graph parameter is always nonnegative and represents some measure of deviation of a graph from its regularity. In the last two decades, many papers have been devoted to the study of this parameter. In particular, its lower bound depending on the graph order and diameter was obtained in 2007 by mathematician S. M. Cioabă. In 2017 when studying the upper and the lower bounds of this parameter, M. R. Oboudi made a conjecture that the lower bound of a given parameter for an arbitrary graph is the difference between a maximum degree and a spectral radius of a chain. This is very similar to the analogous statement for the spectral radius of an arbitrary graph whose lower boundary is also the spectral radius of a chain. In this paper, the above conjecture is confirmed for some graph classes.


Filomat ◽  
2021 ◽  
Vol 35 (4) ◽  
pp. 1289-1304
Author(s):  
Weige Xi

Let G be a strongly connected digraph with distance matrix D(G) and let Tr(G) be the diagonal matrix with vertex transmissions of G. For any real ? ? [0, 1], define the matrix D?(G) as D?(G) = ?Tr(G) + (1-?)D(G). The D? spectral radius of G is the spectral radius of D?(G). In this paper, we first give some upper and lower bounds for the D? spectral radius of G and characterize the extremal digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference between the maximum vertex transmission and the D? spectral radius. Finally, we obtain the D? eigenvalues of the join of certain regular digraphs.


Author(s):  
Yuyuan Deng ◽  
Dangui Li ◽  
Hongying Lin ◽  
Bo Zhou

For a connected graph $G$, the distance matrix is a real-symmetric matrix where the $(u,v)$-entry is the distance between vertex $u$ and vertex $v$ in $G$. The distance spectral radius of $G$ is the largest eigenvalue of the distance matrix. A series-reduced tree is a tree with at least one internal vertex and all internal vertices having degree at least three. Those series-reduced trees that maximize the distance spectral radius are determined over all series-reduced trees with fixed order and maximum degree and over all series-reduced trees with fixed order and domination number, respectively.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2008 ◽  
Author(s):  
Sebastian Cioaba ◽  
Edwin van Dam ◽  
Jack Koolen ◽  
Jae-Ho Lee
Keyword(s):  

2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Sign in / Sign up

Export Citation Format

Share Document