Multiple Alternative Splicing Markers for Ovarian Cancer

2008 ◽  
Vol 68 (3) ◽  
pp. 657-663 ◽  
Author(s):  
Roscoe Klinck ◽  
Anne Bramard ◽  
Lyna Inkel ◽  
Geneviève Dufresne-Martin ◽  
Julien Gervais-Bird ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Ouyang ◽  
Kaide Xia ◽  
Xue Yang ◽  
Shichao Zhang ◽  
Li Wang ◽  
...  

AbstractAlternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.


2017 ◽  
Vol 43 (6) ◽  
pp. 2489-2504 ◽  
Author(s):  
Le Chen ◽  
Ying Yao ◽  
Lijuan Sun ◽  
Jiajia Zhou ◽  
Minmin Miao ◽  
...  

Background/Aims: Our study aims to investigate the role, effect and mechanisms of ESRP1 (epithelial splicing regulatory protein 1) in epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). Methods: Microarray and immunohistochemical analysis of ESRP1 expression were performed in EOC cases. The correlations between ESRP1 expression and clinical factors on EOC were assessed. Lentivirus-mediated RNA interference and EGFP vector which contains ESRP1 gene were used to down-regulate and up-regulate ESRP1 expression in human EOC cell lines. Roles of ESRP1 in cell growth, migration and invasion of EOC cells were also measured by Cell Counting Kit-8 and Transwell systems in vitro and by a nude mice intraperitoneal transplantation model in vivo. Results: By the analysis of Gene Expression Omnibus (GEO) (p<0.05) and our own microarray data (p<0.001), ESRP1 expression in EOC was significantly different from normal ovarian tissue. It was abundant in the nuclei of cancer cells and in malignant lesions. However, it was weakly expressed or negative in both normal and benign lesions. High ESRP1 expression in EOC was associated with poor clinical outcomes. Decreased ESRP1 expression significantly increased cell migration and invasion both in vivo and in vitro. Snail strongly repressed ESRP1 transcription through binding to the ESRP1 promoter in EOC cells. Furthermore, ESRP1 regulated the expression of CD44s. Down-regulated ESRP1 resulted in an isoform switching from CD44v to CD44s, which modulated epithelial-mesenchymal transition (EMT) program in EOC. Up-regulatin of ESRP1 was detected in mesenchymal to epithelial transition (MET) in vivo. Conclusions: ESRP1 regulates CD44 alternative splicing during the EMT process which plays an important role in EOC carcinogenesis. In addition, ESRP1 is associated with disease prognosis in EOC.


2021 ◽  
Author(s):  
Han Wang ◽  
Yingying Zhou ◽  
Siyang Zhang ◽  
Ya Qi ◽  
Min Wang

Abstract Background Small nucleolar RNA host gene 16 (SNHG16) and pre-mRNA processing factor 6(PRPF6) play vital roles in regulatory mechanisms of multiple cancers, but the mechanisms in ovarian cancer (OC) remains poorly understood. Methods The expression of SNHG16 transcripts-SNHG16-L/S in OC tissues were analyzed by real-time PCR (RT-PCR). The expression of PRPF6 in OC tissues were detected by Immunohistochemistry (IHC). Tumorigenesis, epithelial-to-mesenchymal transition (EMT) and PTX-resistance were detected by western blot, transwell, CCK-8 assays, colony formation assays and flow cytometry analyses. Molecular interactions were examined by dual-luciferase reporter gene assay, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). Results The results indicated the expression of SNHG16-L/S was opposite in chemo-resistance and chemo-sensitivity tissues of OC. And SNHG16-L/S had different effects on the progression and PTX-resistance of OC cells. SNHG16-L inhibited GATA binding protein 3 (GATA3) transcription through CCAAT/enhancer-binding protein b (CEBPB) to further promote tumorigenesis, EMT and PTX-resistance of OC. Moreover, PRPF6 was upregulated in chemo-resistance tissues of OC. PRPF6 promoted tumorigenesis and PTX-resistance in vitro and in vivo. Mechanistically, PRPF6 induced the alternative splicing of SNHG16 to downregulate SNHG16-L, which further mediated progression and PTX-resistance through upregulating GATA3 in OC. Conclusions Totally, the results demonstrated that PRPF6 promoted progression and PTX-resistance in OC through SNHG16-L/CEBPB/GATA3 axis. Thus, PRPF6 may become a valuable target for OC therapy.


2021 ◽  
Author(s):  
Peiying Fu ◽  
Ting Zhou ◽  
Dong Chen ◽  
ShiXuan Wang ◽  
Ronghua Liu

Abstract Background: Late-stage ovarian cancer (OV) has a poor prognosis and a high metastasis rate, but the underlying molecular mechanism is ambiguous. RNA binding proteins (RBPs) play important roles in posttranscriptional regulation in the contexts of neoplasia and tumor metastasis. Results: In this study, we explored the molecular functions of a canonical RBP, TRA2B, in cancer cells. TRA2B knockdown in HeLa cells and whole-transcriptome sequencing (RNA-seq) experiments revealed that the TRA2B-regulated alternative splicing (AS) profile was tightly associated with the mitotic cell cycle, apoptosis, and several cancer pathways. Moreover, hundreds of genes were regulated by TRA2B at the expression level, and their functions were enriched in cell proliferation, cell adhesion and angiogenesis, which are related to cancer progression. We also observed that AS regulation and expression regulation occurred independently by integrating the alternatively spliced and differentially expressed genes. We then explored and validated the carcinogenic functions of TRA2B by knocking down its expression in OV cells. In vivo, a high expression level of TRA2B was associated with a poor prognosis in OV patients. Conclusions: We demonstrated the important roles of TRA2B in ovarian neoplasia and OV progression and identified the underlying molecular mechanisms, facilitating the targeted treatment of OV in the future.


2010 ◽  
Vol 2010 ◽  
pp. 1-5
Author(s):  
Lawrence M. Agius

The provision of dynamic splicing events constitutes the reflected nature of neoplasia that locally infiltrates and systemically spreads in terms of evolutionary attributes of the primary and various secondary pathways in malignant transformation. The significant diversity in molecular characterization of the given tumor lesion would adaptively conform to dynamics of splicing as enhanced or silenced exons of the premessenger RNA molecule. The proteins synthesized are in turn potential modifiers in further gene expression within such contexts as RNA:protein and RNA:DNA binding events. The recognition of pathways of incremental scope would underline the development of lesions, such as tumors, as multiple alternative splicing phenomena primarily affecting molecular physicochemical identity. It is within contexts of operative intervention and modification that the real identity of the malignant neoplastic process arises, within terms of reference of contextual splicing events. Disrupted gene expression is thus a referential pathway in the modification of splicing that may prove constitutive or alternative, in first instance, but also aberrant as the lesion progresses locally and systemically.


Sign in / Sign up

Export Citation Format

Share Document