scholarly journals Proteolytic Cleavage of Protein Tyrosine Phosphatase μ Regulates Glioblastoma Cell Migration

2009 ◽  
Vol 69 (17) ◽  
pp. 6960-6968 ◽  
Author(s):  
Adam M. Burgoyne ◽  
Polly J. Phillips-Mason ◽  
Susan M. Burden-Gulley ◽  
Shenandoah Robinson ◽  
Andrew E. Sloan ◽  
...  
2020 ◽  
Vol 401 (10) ◽  
pp. 1167-1180
Author(s):  
María Eugenia Chamorro ◽  
Romina Maltaneri ◽  
Agustina Schiappacasse ◽  
Alcira Nesse ◽  
Daniela Vittori

AbstractThe proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


2010 ◽  
Vol 112 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Polly J. Phillips-Mason ◽  
Harpreet Kaur ◽  
Susan M. Burden-Gulley ◽  
Sonya E.L. Craig ◽  
Susann M. Brady-Kalnay

Sign in / Sign up

Export Citation Format

Share Document