Activity and mechanism of action of histone deacetylase inhibitors in trastuzumab resistant breast cancer.

Author(s):  
S Radke ◽  
A Kumar ◽  
L Jones ◽  
DP Tuck ◽  
LN Harris
2018 ◽  
Author(s):  
Soo-Hyun Kim ◽  
Richard P. Redvers ◽  
Lap Hing Chi ◽  
Xiawei Ling ◽  
Andrew J. Lucke ◽  
...  

ABSTRACTBreast cancer brain metastasis remains largely incurable. While several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immune-compromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. By immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain-selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis.SUMMARY STATEMENTWe introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis and test novel therapies.


2020 ◽  
Vol 8 (1) ◽  
pp. e000195 ◽  
Author(s):  
Johannes Laengle ◽  
Julijan Kabiljo ◽  
Leah Hunter ◽  
Jakob Homola ◽  
Sophie Prodinger ◽  
...  

BackgroundThe monoclonal antibody (mAb) trastuzumab is part of the standard of care for patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer. Antibody-dependent cell-mediated phagocytosis (ADCP) and cytotoxicity (ADCC) are major mechanisms of action of the mAb trastuzumab. Histone deacetylase inhibitors (HDACi), such as valproic acid (VPA) or vorinostat (SAHA), exert several immunostimulatory properties, which contribute at least in part to their anticancer effect. However, the impact of HDACi-induced immunostimulatory effects on trastuzumab-mediated anti-tumor immune response is not well characterized.MethodsWe analyzed the ADCP and ADCC activity of peripheral blood mononuclear cells (PBMCs) from age and gender-matched healthy volunteers (n=5) against HDACi-treated HER2-overexpressing breast cancer cells (SKBR3), using a well-established in vitro three-color imaging flow cytometry and flow cytometry approach.ResultsVPA and SAHA enhanced trastuzumab-mediated ADCP and trastuzumab-independent cytotoxicity. Mechanistically, VPA upregulated the activating antibody-binding receptor Fc-gamma receptor (FcγR) IIA (CD32A) on monocytes (CD14+). Moreover, VPA and SAHA downregulated the anti-apoptotic protein myeloid leukemia cell differentiation 1 (MCL1) in breast cancer cells. Additionally, VPA and SAHA induced an immunogenic cell death, characterized by the exposure of calreticulin (CALR), as well as decreased the “do not eat me” signal CD47 on tumor cells.ConclusionsHDACi VPA and SAHA increase trastuzumab-mediated phagocytosis and trastuzumab-independent cytotoxicity. The immunomodulatory activities of those HDACi support a rationale combined treatment approach with mAb for cancer treatment.


2019 ◽  
Vol 20 (7) ◽  
pp. 1616 ◽  
Author(s):  
Wenbo Li ◽  
Zheng Sun

Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.


2016 ◽  
Vol 5 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Yue Luo ◽  
Hui Wang ◽  
Xipeng Zhao ◽  
Chao Dong ◽  
Fengmei Zhang ◽  
...  

Valproic acid (VPA) is one of the representative compounds of histone deacetylase inhibitors (HDACis) and is used widely for the clinical treatment of epilepsy and other convulsive diseases.


Sign in / Sign up

Export Citation Format

Share Document