scholarly journals An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance

2012 ◽  
Vol 19 (1) ◽  
pp. 279-290 ◽  
Author(s):  
Lauren Averett Byers ◽  
Lixia Diao ◽  
Jing Wang ◽  
Pierre Saintigny ◽  
Luc Girard ◽  
...  
2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 6011-6011
Author(s):  
Robert Cardnell ◽  
Lixia Diao ◽  
Jing Wang ◽  
David Bearss ◽  
Steven Warner ◽  
...  

6011 Background: Epithelial-mesenchymal transition (EMT) has been associated with EGFR inhibitor resistance in preclinical studies of head and neck squamous cell carcinoma (HNSCC). Recently, we developed an EMT signature that predicts EGFR inhibitor resistance in lung cancer. Using this signature, we explored the association between EMT and drug response in HNSCC, focusing on the tyrosine kinase Axl as a potential therapeutic target. Methods: We conducted an integrated molecular and drug response analysis in HNSCC. A 76-gene EMT signature previously developed and validated in lung cancer was tested in HNSCC cell lines (n>50) and patient tumors from The Cancer Genome Atlas (TCGA) (n=113) and a MDACC cohort (n=105). Reverse phase protein array (RPPA) and proliferation assays were used to measure protein expression and sensitivity to erlotinib and the Axl inhibitors SGI-7079 and TP-0930. Results: The EMT signature identified distinct epithelial and mesenchymal subsets of HNSCC among cell lines and patient tumors. RPPA experiments revealed higher protein levels of the receptor tyrosine kinase Axl, vimentin, and N-cadherin and lower expression of E-cadherin and beta-catenin in mesenchymal HNSCC (p-values <0.02). Elevated Axl expression was also associated with significantly shorter overall survival in patients with locally advanced HNSCC (p<0.001 in TCGA cohort; p=0.003 MDACC). Consistent with previous studies, mesenchymal HNSCC cells exhibited resistance to erlotinib (IC50 >10μM); however, we discovered that mesenchymal HNSCC were highly sensitive to two Axl inhibitors, SGI-7079 and TP-0930 (IC50s ≤1.2μM and 0.2uM, respectively). Conclusions: Our EMT gene expression signature identified discrete epithelial and mesenchymal subgroups of HNSCC. Mesenchymal HNSCC cells expressed higher levels of Axl protein and exhibited sensitivity to Axl inhibition, but resistance to erlotinib. These results highlight differences in drug response between epithelial and mesenchymal cancers and support Axl as a potential therapeutic target and predictive marker of EGFR inhibitor resistance in HNSCC. (Funded in part by 5 P50 CA097007-10)


2020 ◽  
Author(s):  
Mohamed Elshaer ◽  
Ahmed Hammad ◽  
Xiu Jun Wang ◽  
Xiuwen Tang

Abstract BackgroundKEAP1-NRF2 pathway alterations were identified in many cancers including, esophageal cancer (ESCA). Identifying biomarkers that are associated with mutations in this pathway will aid in defining this cancer subset; and hence in supporting precision and personalized medicine. MethodsIn this study, 182 tumor samples from the Cancer Genome Atlas (TCGA)-ESCA RNA-Seq V2 level 3 data were segregated into two groups KEAP1-NRF2-mutated (22) and wild-type (160).The two groups were subjected to differential gene expression analysis, and we performed Gene Set Enrichment Analysis (GSEA) to determine all significantly affected biological pathways. Then, the enriched gene set was integrated with the differentially expressed genes (DEGs) to identify a gene signature regulated by the KEAP1-NRF2 pathway in ESCA. Furthermore, we validated the gene signature using mRNA expression data of ESCA cell lines provided by the Cancer Cell Line Encyclopedia (CCLE). The identified signature was tested in 3 independent ESCA datasets to assess its prognostic value.ResultsWe identified 11 epithelial-mesenchymal transition (EMT) genes regulated by the KEAP1-NRF2 pathway in ESCA patients. Five of the 11 genes showed significant over-expression in KEAP1-NRF2-mutated ESCA cell lines. In addition, the over-expression of these five genes was significantly associated with poor survival in 3 independent ESCA datasets, including the TCGA-ESCA dataset.ConclusionAltogether, we identified a novel EMT 5-gene signature regulated by the KEAP1-NRF2 axis and this signature is strongly associated with metastasis and drug resistance in ESCA. These 5-genes are potential biomarkers and therapeutic targets for ESCA patients in whom the KEAP1-NRF2 pathway is altered.


Impact ◽  
2021 ◽  
Vol 2021 (8) ◽  
pp. 28-30
Author(s):  
Masao Tanaka

Rheumatoid arthritis (RA) is an autoimmune disease that can cause damage to the joints, cartilage and bone. There is no cure but early diagnosis can help mitigate damage. Sometimes RA is particularly difficult to treat, for example when the disease took a long time to be diagnosed. Associate Professor Masao Tanaka, Graduate School of Medicine, Kyoto University, Japan, leads a team of researchers working to improve understanding of the causes of poor response to treatment in RA with a long morbidity. The goal is to restore patients' therapeutic responsiveness, thereby improving outcomes. A previous focus for Tanaka was on a protein called FSTL1. He is now exploring DIP2 as a binding molecule for FSTL1. Other important mechanisms Tanaka is exploring are DNA methylation and the mechanisms of carnitine, which has been found to decrease a variety of activation signalling by inhibiting ceramide production in T cells. He and the team are exploring the involvement of these mechanisms in DIP2. In his most recent investigations, Tanaka is exploring DIP2C as a novel regulator for epithelial-mesenchymal transition of RA synovium and a potential therapeutic target. He is focusing on molecules that are expressed in the cells in joints, making the work directly applicable to RA. The team is carrying out a cohort study called KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) that involves around 2,000 outpatients with RA. Ultimately, Tanaka hopes to identify a reproducible combination of patient conditions and therapeutic interventions that achieve better treatment results for RA patients.


2011 ◽  
Author(s):  
Jessica Kandel ◽  
Dimitris Anastassiou ◽  
Viktoria Rumjantseva ◽  
Wei-yi Cheng ◽  
Jianzhong Huang ◽  
...  

2020 ◽  
Vol Volume 13 ◽  
pp. 6497-6509
Author(s):  
Li Yuan Wei ◽  
Xiao Jun Zhang ◽  
Li Wang ◽  
Li Na Hu ◽  
Xu Dong Zhang ◽  
...  

2020 ◽  
Author(s):  
Qing Zhang ◽  
Chen Zhu ◽  
Gefei Guan ◽  
Shuai Shen ◽  
Yunhe Han ◽  
...  

Abstract Background: Glioma is the most prevalent and malignant primary central nervous system tumor in adults. As a member of the integrin alpha chain family of proteins, integrin subunit alpha 3 (ITGA3) has been found to play a critical role in the occurrence and progression of several cancers, including lung, ovarian, and pancreatic cancers. However, the role of ITGA3 in glioma remains unclear.Methods: The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), REMBRANDT, GSE16011, GSE59612, and GSE4290 datasets were used to analyze relevant characteristics of ITGA3 in glioma. R language and GraphPad Prism 7.00 were employed as major tools for statistical analysis and graph manipulation.Results: We identified that ITGA3 expression was upregulated in glioma and related to unfavorable outcomes of glioma patients. Expression of ITGA3 also tended to be enriched in aggressive subtypes of glioma. We demonstrated that expression of ITGA3 was negatively correlated with glioma purity. In gliomas with high ITGA3 expression, the anti-glioma immune response was inhibited. ITGA3 also regulated angiogenesis within the glioma microenvironment and promoted the epithelial–mesenchymal transition (EMT) and autophagy of glioma cells. GSEA analysis revealed that ITGA3 could activate ERK1/2 and PI3K/AKT/mTOR pathways.Conclusion: Our data suggested that ITGA3 promoted the malignant progression of glioma by regulating the immunity of glioma as well as the EMT and autophagy of glioma cells, which could act as a therapeutic target for glioma.


Sign in / Sign up

Export Citation Format

Share Document