scholarly journals Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097

2015 ◽  
Vol 14 (10) ◽  
pp. 2249-2259 ◽  
Author(s):  
Ellen Weisberg ◽  
Ensar Halilovic ◽  
Vesselina G. Cooke ◽  
Atsushi Nonami ◽  
Tao Ren ◽  
...  
HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 443-444
Author(s):  
N. Ferrari ◽  
L. Bevan ◽  
J. Castro ◽  
G. Chessari ◽  
L. Fazal ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2596-2596
Author(s):  
Ismael Samudio ◽  
Martin Dietrich ◽  
Paul Corn ◽  
Dajun Yang ◽  
Gautam Borthakur

Abstract Although TP53 mutations are rare in acute myeloid leukemia (AML), inactivation of wild-type p53 protein frequently occurs through overexpression of its negative regulator MDM2 (murine double minute 2). We investigated the effects of MI-63, a small molecule that activates p53 by inhibition of MDM2-p53 interaction [ Ki value of 3 nM (J Med Chem.2006;49(12):3432–5)] in AML cell lines. Treatment with MI-63 triggered apoptosis (evidenced by loss of membrane potential and externalization of phosphatidylserine) in AML cell lines with wild-type p53 (OCI-AML-3 and MOLM13) in a time and concentration-dependent manner (IC50 at 72 hrs.= 2.5 μM for OCI-AML-3 and 1 μM for MOLM-13), while a p53-null AML cell line (HL-60) was resistant (IC50 not reached at 10 μM). Moreover, knockdown of p53 in OCI-AML3 cells rendered this cell line resistant to MI-63 induced apoptosis while control vector infected OCI-AML-3 cells remained as sensitive to MI-63 similar to the parental cells. Mechanistic studies showed that MI-63 blocks G1/S phase transition in AML cells with wild-type p53 resulting in accumulation of cells in G1 phase (percentage cells inG1 phase at 24 hrs. = 88.66% vs 43.49% in cultures with DMSO control) while MI-61, a skeletally related but inactive control compound failed to do so (41.63%). Treatment with MI-63 increased cellular levels of p53 and p53 dependent proteins in OCI-AML-3 cells that include p21 and BH3-only pro-apoptotic protein Puma and pro-apoptotic multi-domain Bcl-2 family member Bax. Additionally, MI-63 induced a profound decrease in the levels of MDM4, an MDM2 homolog that has been reported to mediate resistance to the effects of nutlin-3a, suggesting that MI-63 may offer a therapeutic advantage in cells expressing high levels of MDM4. Finally, supporting the concept that increased levels of p53 modulate the apoptotic rheostat both directly, by behaving as a BH3-only protein, and indirectly by increasing the levels of sensitizer BH3-only proteins, MI-63 potently synergized with AT-101, an orally available pan inhibitor of Bcl-2, Bcl-xL and Mcl-1 (currently being evaluated as an antitumor agent in Phase I/II trials by Ascenta Therapeutics), to induce mitochondrial dysfunction and apoptosis in OCI-AML-3 cells (average combination index = 0.055±0.019). Taken together our results support preclinical evaluation of novel small molecule MI-63 alone and in combination with Bcl-2 inhibitors for the therapy of AML. The studies in primary AML samples are ongoing. Fig.1: MI-63 Induced Apoptosis Requires Intact p53 Fig.1:. MI-63 Induced Apoptosis Requires Intact p53 Fig.2: Efect of MI-63 on p53 and Related Proteins (comparison with N3a, a known MDM2 inhibitor included) Fig.2:. Efect of MI-63 on p53 and Related Proteins (comparison with N3a, a known MDM2 inhibitor included)


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2948-2948
Author(s):  
Vijay G. Ramakrishnan ◽  
Teresa K. Kimlinger ◽  
Timothy Halling ◽  
Jessica Haug ◽  
Utkarsh Painuly ◽  
...  

Abstract Abstract 2948 Background: Deletions and mutations in the tumor suppressor protein p53 are an uncommon observation in new multiple myeloma (MM) patients and are observed more commonly in patients with advanced disease. p53 deletion has been observed to correlate with poor overall and progression free survival in MM patients. Wild type p53 modulates the expression levels of a broad array of proteins involved in cell cycle progression, apoptosis ultimately leading to cell cycle arrest and apoptosis. p53 is negatively regulated by MDM2. MDM2 binds to and ubiquitinates p53 marking it for proteasomal degradation. In addition, MDM2 is a direct downstream regulator of p53. Targeting the p53-MDM2 interaction by developing agents that bind to the p53 binding motif of MDM2 and reactivating p53 has therefore been an active area of research. Here, we present results from our pre-clinical studies using AT219, a small molecule inhibitor that binds to MDM2 preventing its interaction with p53. Methods: AT219 was obtained from Ascenta Therapeutics. Stock solutions were made using DMSO and working stock solutions were made using RPMI 1640 media containing 10% fetal bovine serum (20% serum for primary patient cells) supplemented with L-Glutamine, penicillin, and streptomycin. Akt1/2 kinase inhibitor (Akti) was purchased from Sigma. MTT assay was performed to study drug induced cytotoxicity and thymidine uptake was used as a measure to study differences in proliferation. Flow cytometry using Annexin V-FITC and propidium iodide (PI) was used to measure drug induced apoptosis in cell lines and patient cells. In addition, apo-2.7 was also used to measure apoptosis in patient cells. Mitocapture and cytochrome-c assays were also performed to confirm the induction of apoptosis in MM cell lines. In order to study the mechanism of action of the drug, immunoblotting studies were performed on lysates made from cell lines incubated with the drug for various time points. Results: AT219 induced potent cytotoxicity in MM cell lines MM1S, MM1R and H929, all three expressing wild type p53 with IC50 values of 2.5–5μM. Similar effects were observed when the above mentioned cell lines were treated with AT219 and the inhibitory effect of proliferation of these cells were examined. When MM1S or H929 cells were cultured with bone marrow stromal cells (BMSCs) derived from MM patients or with one of the three tumor promoting cytokines implicated in MM (IL6, IGF or VEGF) and treated with AT219, the drug was able to inhibit the proliferation of both cell lines to similar extents as observed when cultured independently without BMSCs or the cytokines. The increase in cytotoxicity was found to be due to cells undergoing apoptosis as observed when MM1S or H929 cells were cultured with AT219 and % apoptotic cells were measured as measured by annexin/PI, mitocapture and cytochrome c assays. AT219 was also observed to induce more potent apoptosis in primary cells obtained from new MM patients with wild type p53 than in cells obtained from relapsed MM patients with wild type p53. AT219 clearly upregulated p53 as observed by performing immunoblots after treatment with the drug in MM1S and H929 cells. In addition, MDM2 and p21 were also found to be significantly upregulated and Bax was slightly upregulated post drug treatment. Bcl2, Mcl1 and Xiap levels were down regulated. In MM1S cells AT219 treatment resulted in a slight down regulation of pAkt (Ser 473). However, in H929 cells we observed a transient upregulation of pAkt following AT219 treatment. This prompted us to test AT219 in combination with Akti on MM cell lines. Our results on both MM1S and H929 cells using AT219 in combination with Akti demonstrated synergy. We are currently testing this combination in primary cells drawn from MM patients with both wild type p53 and those with p53 deletions and mutations. Conclusions: Our studies validate the anti-MM activity of AT219 in MM patients with wild type p53. In addition to using AT219 in combination with Akti, we are testing AT219 in combination with existing anti- MM chemotherapeutic agents. Interesting results from our studies will form the basis for clinical evaluation of AT219 as a single agent or in combination with an Akt inhibitor or other agents in MM patients. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Merck: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Research Funding; Novartis: Research Funding; Genzyme: Research Funding; Cephalon: Research Funding.


Blood ◽  
2008 ◽  
Vol 112 (7) ◽  
pp. 2886-2895 ◽  
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Twee Tsao ◽  
Hideki Nakakuma ◽  
Michael Andreeff

Abstract Aberrant expression of Aurora kinases and inactivation of wild-type p53 by Mdm2 overexpression are frequent molecular events in acute myelogenous leukemia (AML), and preclinical data for inhibition of Aurora kinases or Mdm2 are promising. However, it remains largely unknown whether the viability of cells exposed to Aurora kinase inhibitors depends on the p53 status. We investigated the interaction of Aurora kinases and p53 pathways after their simultaneous blockades using a small-molecule pan-Aurora kinase inhibitor, MK-0457, and a selective small-molecule antagonist of Mdm2, Nutlin-3. We found that MK-0457, which itself activates p53 signaling, acts synergistically with Nutlin-3 to induce apoptosis in wild-type p53 AML cell lines OCI-AML-3 and MOLM-13 but not in p53-null HL-60 cells. MK-0457 and Nutlin-3 showed synergism in inducing p53, conformational change of Bax and Δψm loss, suggesting an involvement of p53-mediated mitochondrial apoptosis. Nutlin-3 constrained endoreduplication after Aurora inhibition via activation of a p53-dependent postmitotic checkpoint and p21 induction in pseudo-G1 cells. Our findings provide the molecular rationale for concomitant targeting of Aurora kinases and Mdm2 in AML where TP53 mutations are rare and downstream p53 signaling is mostly intact.


Sign in / Sign up

Export Citation Format

Share Document