scholarly journals The Unfolded Protein Response: A Novel Therapeutic Target for Poor Prognostic BRAF Mutant Colorectal Cancer

2018 ◽  
Vol 17 (6) ◽  
pp. 1280-1290 ◽  
Author(s):  
Nicholas Forsythe ◽  
Alaa Refaat ◽  
Arman Javadi ◽  
Hajrah Khawaja ◽  
Jessica-Anne Weir ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 7114
Author(s):  
Ahmad Zulkifli ◽  
Fiona H. Tan ◽  
Zammam Areeb ◽  
Sarah F. Stuart ◽  
Juliana Gomez ◽  
...  

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.


2021 ◽  
Author(s):  
Christopher J Fields ◽  
Lu Li ◽  
Nicholas M Hiers ◽  
Tianqi Li ◽  
Peike Sheng ◽  
...  

MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched in the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed genes are enriched in eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone Calnexin as a direct miR-320a target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. Our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.


2013 ◽  
Vol 133 (6) ◽  
pp. 1408-1418 ◽  
Author(s):  
Michael Thornton ◽  
Mohammed A. Aslam ◽  
Elizabeth M. Tweedle ◽  
Chin Ang ◽  
Fiona Campbell ◽  
...  

2017 ◽  
Vol 22 (7) ◽  
pp. 787-800 ◽  
Author(s):  
Dimitrios Doultsinos ◽  
Tony Avril ◽  
Stéphanie Lhomond ◽  
Nicolas Dejeans ◽  
Philippe Guédat ◽  
...  

The unfolded protein response (UPR) is an integrated, adaptive biochemical process that is inextricably linked with cell homeostasis and paramount to maintenance of normal physiological function. Prolonged accumulation of improperly folded proteins in the endoplasmic reticulum (ER) leads to stress. This is the driving stimulus behind the UPR. As such, prolonged ER stress can push the UPR past beneficial functions such as reduced protein production and increased folding and clearance to apoptotic signaling. The UPR is thus contributory to the commencement, maintenance, and exacerbation of a multitude of disease states, making it an attractive global target to tackle conditions sorely in need of novel therapeutic intervention. The accumulation of information of screening tools, readily available therapies, and potential pathways to drug development is the cornerstone of informed clinical research and clinical trial design. Here, we review the UPR’s involvement in health and disease and, beyond providing an in-depth description of the molecules found to target the three UPR arms, we compile all the tools available to screen for and develop novel therapeutic agents that modulate the UPR with the scope of future disease intervention.


Oncogene ◽  
2018 ◽  
Vol 38 (6) ◽  
pp. 794-807 ◽  
Author(s):  
Tammi Arbel Rubinstein ◽  
Shiri Shahmoon ◽  
Ehud Zigmond ◽  
Tal Etan ◽  
Keren Merenbakh-Lamin ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 333 ◽  
Author(s):  
Alberto M. Martelli ◽  
Francesca Paganelli ◽  
Francesca Chiarini ◽  
Camilla Evangelisti ◽  
James A. McCubrey

The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.


Autophagy ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 781-819 ◽  
Author(s):  
Pooneh Mokarram ◽  
Mohammed Albokashy ◽  
Maryam Zarghooni ◽  
Mohammad Amin Moosavi ◽  
Zahra Sepehri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document