Abstract LB-B13: The application of high-dose low fraction image-guided irradiation (IGMI) in combination with anti-CTLA4 immunotherapy results in an additive inhibition of tumor growth in syngeneic tumor models

Author(s):  
Andrew Mckenzie ◽  
Nektaria Papadopoulou ◽  
Yinfei Yin ◽  
Shonna Glenn ◽  
Russell Garland ◽  
...  
2021 ◽  
Author(s):  
Mi Young Cha ◽  
Youn Kyung Houh ◽  
Yun Yeon Kim ◽  
Hyunuk Kim ◽  
Joo-Yeon Chung ◽  
...  

2003 ◽  
Vol 38 ◽  
pp. 214
Author(s):  
M. Barajas ◽  
H. Villanueva ◽  
V. Schmitz ◽  
G. Kramer ◽  
P. Jesus ◽  
...  

2022 ◽  
Author(s):  
Chunxiao Xu ◽  
Lindsay Webb ◽  
Sireesha Yalavarthi ◽  
Clotilde Bourin ◽  
Jacques Moisan

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A918-A918
Author(s):  
Mehta Naveen ◽  
Bochong Li ◽  
Dane Wittrup ◽  
Patrick Baeuerle ◽  
Jennifer Michaelson

BackgroundIL-2 and IL-12 synergistically trigger the stimulation and proliferation of T and NK cells to mediate anti-tumor immunity. Although aldesleukin, a high-dose IL-2 intravenous (IV) infusion regimen, has been approved for the treatment of melanoma and renal cell carcinoma, adoption has been hindered by frequent grade 3 and 4 severe adverse events. No IL-12 therapy has been approved yet due to toxicity. Cullinan Amber is developing a fusion protein that uniquely combines in one polypeptide both IL-2 and IL-12 with a collagen-binding domain to reduce toxicity and increase efficacy following intra-tumoral (IT) administration via retention in the tumor microenvironment.MethodsProteins were expressed in HEK293 cells. Collagen binding was measured by ELISA. IL-2 and IL-12 bioactivity was evaluated by CTLL-2 proliferation and HEK-Blue IL-12 reporter cells. In vivo studies were conducted in B16F10, MC38, and CT26 syngeneic tumor models. Systemic Amber construct concentrations were determined by ELISA.Results”Amber” constructs, comprised of IL-2, IL-12, and a collagen-binding domain, were produced and confirmed to retain bioactivity. B16F10 tumor-bearing mice injected with Amber IT had systemic Amber levels <5% as compared to mice administered the same dose IV. When IL-2/IL-12 fusion proteins lacking a collagen-binding domain were injected IT in B16F10-bearing mice, 60% of mice needed to be euthanized due to severe body weight loss, while Amber-treated mice did not lose body weight. In the checkpoint-refractory B16F10 and MC38 models, Amber demonstrated 95% tumor growth inhibition (figure 1a) and 100% CRs (figure 1b), respectively. 90% of the mice cured of their primary MC38 tumors were protected from re-challenge (figure 1b). Notably, 70% CRs were observed in the MC38 model even after a single-dose treatment of Amber. Similar data was obtained in the CT26 model. Amber treatment of mice bearing large 500 mm3 MC38 tumors resulted in dramatic tumor shrinkage (figure 1c). In mice bearing two MC38 tumors, only one of which was treated IT, 100% of treated tumors and 90% of distal untreated tumors were eliminated when Amber was combined with an anti-PD1 antibody (figure 1d), demonstrating a robust abscopal response.Abstract 876 Figure 1Efficacy of amber constructs in syngeneic tumor modelsConclusionsThe use of collagen-binding domains for tumor retention enables the safe and effective delivery of IL-2 and IL-12 in a single multifunctional molecule. Taken together, the preclinical data suggests that Amber constructs may show robust single-agent activity in clinical trials against checkpoint-refractory tumors with minimal toxicity, as well as the potential to significantly deepen anti-tumor responses in combination with checkpoint inhibitor therapy.


2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document