Abstract 1909: B cells present tumor antigen and mediate anti-tumor immunity induced by a combined immune-stimulatory/conditional cytotoxic therapy for glioblastoma

Author(s):  
Marianela Candolfi ◽  
James F. Curtin ◽  
Kader Yagiz ◽  
Hikmat Assi ◽  
Mia Wibowo ◽  
...  
2010 ◽  
Vol 33 (8) ◽  
pp. 789-797 ◽  
Author(s):  
Pengfei Zhou ◽  
Junzhuan Qiu ◽  
Lawrence LʼItalien ◽  
Danling Gu ◽  
Douglas Hodges ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 109 ◽  
Author(s):  
Yun-Sun Kim ◽  
Hyun-Jeong Ko ◽  
Yeon-Jeong Kim ◽  
Seung-Hee Han ◽  
Jung-Mi Lee ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Fei Guo ◽  
Jiu Wei Cui

Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1743-1743
Author(s):  
Chi-Ling Chiang ◽  
Frank W Frissora ◽  
Zhiliang Xie ◽  
Xiaomeng Huang ◽  
Rajeswaran Mani ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL), characterized by accumulation of CD5+CD19+sIgM+ B lymphocytes in peripheral blood and lymphoid organs, is classified into indolent and aggressive forms. Patients with indolent CLL generally survive 5 to 10 years and do not require treatment until severe symptoms, while those with aggressive CLL show resistant to standard treatment and survive less than 24 months. While emerging B cell antigen receptor directed therapies are promising, resistance to such therapies pose problems warranting novel therapeutic approaches. MicroRNA (miR) profiling revealed lower expression of miR-29b in aggressive CLL associated with survival, drug resistance and poor prognosis via its up-regulation of anti-apoptotic proteins myeloid leukemia cell differentiation protein 1 (Mcl1) and oncogenic T-cell leukemia 1 (Tcl1). Thus, specific overexpression of miR-29b in B-CLL cells could be a potential therapy for aggressive CLL patients. Despite the promise, short circulation half-life, limited cellular uptake and off-target effects on non-desirable tissues pose a challenge for miR-based therapies. To promote efficiency and specificity of miR-29b delivery, we developed neutral immunonanoparticles with selectivity to CLL via targeting tumor antigen ROR1, which is expressed in over 95% of CLL but not normal B cells. We optimized a novel 2A2-immunoliposome (2A2-ILP) recognizing surface ROR1 on primary CLL cell to promote internalization and miR-29b uptake (n=6, p=0.042*). About 20-fold increased uptake of miR-29b was achieved with 2A2-ILP-miR-29b formulation compared to control. Further ROR1 targeted delivery of miR29b resulted in significant downregulation of DNMT1 and DNMT3a mRNA and protein (n=3, DNMT1: p= 0.0115*; DNMT3a: p=0.0231*, SP1; p=0.0031**) in primary CLL cells and a human CLL cell line OSU-CLL. Consistent with the downregulation of DNMTs, decreased global DNA methylation was observed in OSU-CLL cell line one week post- treatment with 2A2-ILP-miR-29b (n=3, p=0.0003***). To further study the in vivo ROR1-targeting efficiency of 2A2-ILP-miR-29b, we used our recently described Eµ-hROR1x Tcl1 CLL mouse model that develops CLL like disease with human ROR1 antigen in leukemic CD19+CD5+ B cells. Using hROR1+CD19+CD5+ leukemic cell engraftment model, we showed significant in-vivo efficacy of ROR1-ILP-miR-29b formulation associated with a) decreased number of circulating leukemic B220+CD5+ cells b) reduced splenomegaly (p=0.0461*, 2A2-29b: n=9; PBS: n=8) c) with extended survival (p=0.0075**, 2A2-29b: n=9; IgG-29b: n=7; 2A2-SC: n=7; PBS: n=8). In summary, 2A2-ILP effectively delivered functional miR-29b, resulting in downregulation of DNMT1 and DNMT3a, reduction of hypermethylation and anti-leukemic activity. Ongoing studies are aimed at understanding miR-29b mediated in-vivo methylome reprograming using our novel hROR1xTcl1 transgenic mouse model and ROR1-targeted miR-29b delivery formulation. Figure 1. Figure 1. Disclosures Byrd: Acerta Pharma BV: Research Funding.


Immunobiology ◽  
1996 ◽  
Vol 195 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Osamu Ito ◽  
Mamoru Harada ◽  
Mitsuhiro Takenoyama ◽  
Hiroshi Sumichika ◽  
Goro Matsuzaki ◽  
...  
Keyword(s):  
B Cells ◽  

Author(s):  
Mélanie Gaignage ◽  
Xuhao Zhang ◽  
Julie Stockis ◽  
Olivier Dedobbeleer ◽  
Camille Michiels ◽  
...  

Abstract Transmembrane protein GARP binds latent TGF-β1 to form GARP:(latent)TGF-β1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-β1. Blocking TGF-β1 activation by Tregs with anti-GARP:TGF-β1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-β1 inhibits anti-tumor immunity. TGF-β1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-β1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r−/− mice treated with anti-GARP:TGF-β1 mAbs. To examine the effects of GARP:TGF-β1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-β1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-β1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. Précis Immunotherapy with GARP:TGF-β1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4992-4992
Author(s):  
Matthew J. Goldstein ◽  
Joshua Brody ◽  
Ronald Levy

Abstract Background: Tumor vaccines typically combine unique, tumor antigens with immune stimulants in an effort to elicit a tumor-specific immune response. In prior work we have described a vaccination maneuver that combines cytotoxic chemotherapy to release tumor antigens with intra-tumor injection of a Toll-like Receptor 9 (TLR9) ligand, CpG oligonucleotide (Li and Levy, J. Immunology, 2007). In this therapy, CpG can activate both host antigen presenting cells as well as the tumor itself. Stimulation of tumor B cells through TLR9 induces up-regulation of immune co-stimulatory molecules including CD80, CD86, and CD40 as well as increasing expression of MHC Class I and II. We have now developed an alternative vaccination approach in which B cell lymphoma tumor cells are stimulated with CpG ex vivo and administered as a whole-cell vaccine. Methods: A20 B cell lymphoma tumor cells were incubated with CpG for 72 hours, irradiated, and administered to naïve Balb/C mice. The complete vaccination regimen included six doses of 1×106 cells administered daily at a sub-cutaneous (s.c.) site. Vaccine-induced immune responses were assessed by measuring IFN-γ expression of peripheral blood lymphocytes (PBLs) in response to co-culture with A20 tumor cells. Tumor protection studies were conducted by challenging vaccinated mice with a lethal dose of 10×106 A20 tumor cells. Anti-tumor immunity generated by vaccination was also tested in adoptive cell transfer studies. Results: Sub-cutaneous vaccination with CpG-stimulated, whole-cell vaccine induces robust anti-tumor T cell immunity comparable to that induced by intra-tumor vaccination with CpG. This immunizing effect was dependent on tumor cell activation, since native tumor cells were less efficient at inducing anti-tumor immune responses. Both CD4+ and CD8+ T cells participated in this response. Mice vaccinated with this regimen were protected against tumor challenge. Splenocytes from vaccine-primed donors were adoptively transferred into irradiated, syngeneic recipients. These ‘immunotransplanted’ recipients had even greater immune protection against tumor challenge than the directly vaccinated donor mice. Conclusions: We have developed a vaccination approach that takes advantage of the antigen presentation capability of malignant B cells. Vaccination with CpG-activated lymphoma cells induced anti-tumor immune responses that were further enhanced by adoptive transfer of immune cells into lymphodepleted recipients. These vaccine maneuvers are directly translatable into therapeutic, human clinical trials.


2015 ◽  
Vol 6 ◽  
Author(s):  
Claire Germain ◽  
Sacha Gnjatic ◽  
Marie-Caroline Dieu-Nosjean
Keyword(s):  
B Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document