Abstract 152: Nicotine inhibits the therapeutic effects of gemcitabine in pancreatic cancer cellsin vitroand in a mouse xenograft model

Author(s):  
Jheelam Banerjee ◽  
Hussein A.N. Al-Wadei ◽  
Hildegard M. Schuller
2016 ◽  
Vol 107 (10) ◽  
pp. 1443-1452 ◽  
Author(s):  
Masaki Yoshida ◽  
Yoshihiro Miyasaka ◽  
Kenoki Ohuchida ◽  
Takashi Okumura ◽  
Biao Zheng ◽  
...  

2020 ◽  
Author(s):  
Xiaowei Fu ◽  
Xueqiang Deng ◽  
Weidong Xiao ◽  
Bo Huang ◽  
Xuan Yi ◽  
...  

Abstract BackgroundChemoresistance is a major cause of treatment failure in pancreatic cancer (PC). It has been demonstrated that epithelial-to-mesenchymal transition (EMT) is closely related to drug resistance in PC; however, the underlying mechanisms are not yet fully understood. Recently found evidence has suggested that nuclear-enriched abundant transcript 1 (NEAT1) is involved in the development of chemoresistance. However, the role and mechanism of NEAT1 in PC gemcitabine resistance remain unknown.MethodsTwo independent gemcitabine-resistant (GR) PC cell lines, PANC-1/GR and SW1990/GR, were established. Transwell assays were used to validate whether GR cells acquired EMT. qRT-PCR and western blot were performed to detect the expression levels of NEAT1, miR-506-3p, and ZEB2 in GR cells. MTT and cell apoptosis assays were conducted to evaluate the sensitivity of GR cells to gemcitabine. Rescue experiments were employed to investigate whether NEAT1 mediates drug resistance of GR cells through modulation of the miR-506-3p/ZEB2/EMT axis. Furthermore, a mouse xenograft model was established to confirm these findings.ResultsGR cells displayed markedly enhanced migration and invasion abilities, decreased expression of E-cadherin, and upregulation of N-cadherin, Vimentin, Snail, ZEB1, and ZEB2. Furthermore, elevated expression of NEAT1 was observed in GR cells. Downregulation of NEAT1 sensitized GR cells to gemcitabine. More importantly, we demonstrated that downregulation of NEAT1 enhanced the sensitivity of GR cells to gemcitabine by reversing the EMT process. NEAT1 regulated ZEB2 expression by sponging miR-506-3p, and the function of NEAT1 in GR cells was dependent on miR-506-3p. These findings were further confirmed in a nude mouse xenograft model.ConclusionsTaken together, downregulation of NEAT1 sensitized the GR PC cells to gemcitabine through modulation of the miR-506-3p/ZEB2/EMT axis. These results provide a new direction for improving the chemotherapeutic effects in PC.


2020 ◽  
Vol 20 (1) ◽  
pp. 64-70
Author(s):  
Emi Tanaka ◽  
Daisuke Uchida ◽  
Hidenori Shiraha ◽  
Hironari Kato ◽  
Atsushi Ohyama ◽  
...  

Background: We previously demonstrated that the reduced expression in immortalized cells (REIC)/dikkopf-3 (Dkk-3) gene was downregulated in various malignant tumors, and that an adenovirus vector carrying the REIC/Dkk-3 gene, termed Ad-REIC induced cancer-selective apoptosis in pancreatic cancer and hepatocellular carcinoma. Objective: In this study, we examined the therapeutic effects of Ad-REIC in biliary cancer using a second- generation Ad-REIC (Ad-SGE-REIC). Methods: Human biliary cancer cell lines (G-415, TFK-1) were used in this study. The cell viability and apoptotic effect of Ad-SGE-REIC were assessed in vitro using an MTT assay and Hoechst staining. The anti-tumor effect in vivo was assessed in a mouse xenograft model. We also assessed the therapeutic effects of Ad-SGE-REIC therapy with cisplatin. Cell signaling was assessed by Western blotting. Results: Ad-SGE-REIC reduced cell viability, and induced apoptosis in biliary cancer cell lines via the activation of the c-Jun N-terminal kinase pathway. Ad-SGE-REIC also inhibited tumor growth in a mouse xenograft model. This effect was further enhanced in combination with cisplatin. Conclusions: Ad-SGE-REIC induced apoptosis and inhibited tumor growth in biliary cancer cells. REIC/Dkk-3 gene therapy using Ad-SGE-REIC is an attractive therapeutic tool for biliary cancer.


Sign in / Sign up

Export Citation Format

Share Document