Abstract 1067: Somatic genomic mutations, RNA-Seq, and proteomic signal transduction network analysis of tumor and stroma in metastatic triple negative breast cancer

Author(s):  
Virginia A. Espina ◽  
Joyce A. O'Shaughnessy ◽  
Maren K. Levin ◽  
David W. Craig ◽  
John D. Carpten ◽  
...  
2012 ◽  
Author(s):  
Milan Radovich ◽  
Susan E. Clare ◽  
George W. Sledge ◽  
Ivanesa Pardo ◽  
Theresa Mathieson ◽  
...  

2019 ◽  
Vol 15 (5) ◽  
pp. 1162 ◽  
Author(s):  
VasanthaKumar Bhaskara ◽  
Chaitra Jayaram ◽  
M Priyanga ◽  
NH Thilak Nayaka ◽  
A Shivakumara ◽  
...  

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Daoyu Zhang ◽  
Xinglan An ◽  
Hao Yu ◽  
Ziyi Li

Abstract Breast cancer is one of the most prevalent and recurring cancer types that leads to deaths in women. Triple-negative breast cancer (TNBC) is difficult to treat due to the lack of therapeutic targets. Many studies have focused on identifying drugs for use as alternative treatments for breast cancer. Thioguanine (6-TG) exerts antitumor effects in cancer. Increasing evidence has demonstrated that competitive endogenous ribonucleic acids (ceRNAs) are involved in cancer processes. However, the mechanism by which 6-TG regulates lncRNA–miRNA–mRNAs has not been elucidated. We evaluated the antitumor effect of 6-TG in MDA-MB-231 cells and comprehensively analyzed the RNA-Seq data of MDA-MB-231 cells treated with 6-TG. Our results showed that most tumor pathways were blocked by 6-TG. The hub genes were FN1, FLNA, FLNB, VCL, GSN, MYH10, ACTN4, KDR and EREG, and they were all down-regulated after 6-TG treatment. The coexpression network consisted of 18 microRNAs (miRNAs), 9 long noncoding RNAs (lncRNAs) and 20 mRNAs. Hsa-mir-16-5p and Hsa-mir-335-5p targeted the greatest number of mRNAs in the network. These molecules could bind to PAX8-AS1 and eliminate the inhibition of target mRNA expression. We showed that PAX8-AS1 is the main lncRNA affected by 6-TG and that PAX8-AS1 regulates the hub genes in tumor pathways by competitively binding with miR-16-5p and miR-335-5p.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mengxing Li ◽  
Suryavathi Viswanadhapalli ◽  
Bindu Santhamma ◽  
Uday P. Pratap ◽  
Yiliao Luo ◽  
...  

AbstractHistone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Sign in / Sign up

Export Citation Format

Share Document