Abstract 4465: Glypican-1: A tumor suppressor or an oncogene in human bone metastatic prostate cancer cells

Author(s):  
Nhat D. Quach ◽  
Matthew Eggert ◽  
Deepraj Ghosh ◽  
Michelle R. Dawson ◽  
Robert Arnold ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sukhneeraj P. Kaur ◽  
Arti Verma ◽  
Hee. K. Lee ◽  
Lillie M. Barnett ◽  
Payaningal R. Somanath ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in the tumor microenvironment. CAFs orchestrate tumor-stromal interactions, and contribute to cancer cell growth, metastasis, extracellular matrix (ECM) remodeling, angiogenesis, immunomodulation, and chemoresistance. However, CAFs have not been successfully targeted for the treatment of cancer. The current study elucidates the significance of glypican-1 (GPC-1), a heparan sulfate proteoglycan, in regulating the activation of human bone marrow-derived stromal cells (BSCs) of fibroblast lineage (HS-5). GPC-1 inhibition changed HS-5 cellular and nuclear morphology, and increased cell migration and contractility. GPC-1 inhibition also increased pro-inflammatory signaling and CAF marker expression. GPC-1 induced an activated fibroblast phenotype when HS-5 cells were exposed to prostate cancer cell conditioned media (CCM). Further, treatment of human bone-derived prostate cancer cells (PC-3) with CCM from HS-5 cells exhibiting GPC-1 loss increased prostate cancer cell aggressiveness. Finally, GPC-1 was expressed in mouse tibia bone cells and present during bone loss induced by mouse prostate cancer cells in a murine prostate cancer bone model. These data demonstrate that GPC-1 partially regulates the intrinsic and extrinsic phenotype of human BSCs and transformation into activated fibroblasts, identify novel functions of GPC-1, and suggest that GPC-1 expression in BSCs exerts inhibitory paracrine effects on the prostate cancer cells. This supports the hypothesis that GPC-1 may be a novel pharmacological target for developing anti-CAF therapeutics to control cancer.


Oncotarget ◽  
2018 ◽  
Vol 9 (54) ◽  
pp. 30363-30384 ◽  
Author(s):  
Christina K. Cajigas-Du Ross ◽  
Shannalee R. Martinez ◽  
Leanne Woods-Burnham ◽  
Alfonso M. Durán ◽  
Sourav Roy ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57194 ◽  
Author(s):  
Ayesha S. Don-Salu-Hewage ◽  
Siu Yuen Chan ◽  
Kathleen M. McAndrews ◽  
Mahandranauth A. Chetram ◽  
Michelle R. Dawson ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1083
Author(s):  
Kum Hee Noh ◽  
Ae Jin Jeong ◽  
Haeri Lee ◽  
Song-Hee Lee ◽  
Eunhee Yi ◽  
...  

Although prostate cancer is clinically manageable during the early stages of progression, metastatic progression severely compromises the prognosis and leads to mortality. Constitutive activation of STAT3 has been connected to prostate cancer malignancy, and abolishing the STAT3 activity may diminish tumor growth and metastasis. However, its suppressor genes and pathways have not been well established. In this study, we show that promyelocytic leukemia zinc finger (PLZF) has a putative tumor-suppressor function in prostate cancer by inhibiting phosphorylation of STAT3. Compared with a benign prostate, high-grade prostate cancer patient tissue was negatively correlated with PLZF expression. PLZF depletion accelerated proliferation and survival, migration, and invasion in human prostate cancer cells. Mechanistically, we demonstrated a novel role of PLZF as the transcriptional regulator of the tyrosine phosphatase SHP-1 that inhibits the oncogenic JAKs–STAT3 pathway. These results suggest that the collapse of PLZF expression by the CCL3 derived from fibroblasts accelerates the cell migration and invasion properties of prostate cancer cells. Our results suggest that increasing PLZF could be an attractive strategy for suppressing prostate cancer metastasis as well as for tumor growth.


MRS Advances ◽  
2019 ◽  
Vol 4 (21) ◽  
pp. 1207-1213 ◽  
Author(s):  
MD Shahjahan Molla ◽  
Dinesh R. Katti ◽  
Kalpana S. Katti

ABSTRACTProstate cancer has a strong preference for metastasizing to bone which is the primary cause of prostate cancer-related morbidity and mortality. The complex nature of cancer metastasis requires the development of translational models that recapitulate a specific metastatic stage. Herein, we report the mimicking of mesenchymal to epithelial transition (MET) of prostate cancer cells using highly metastatic and a non-metastatic prostate cancer cell lines. A unique cell culture technique that we termed as ‘sequential culture’ was used to create a biomimetic bone microenvironment for metastasized prostate cancer cells by introducing bioactive factors from osteogenic induction of human mesenchymal stem cells (MSCs) within the porous 3D scaffolds. The in vitro 3D tumor model can be used as a testbed to study the interaction between prostate cancer and bone microenvironment and for the design of novel therapeutic studies.


Sign in / Sign up

Export Citation Format

Share Document