Abstract 5386: In situ detection of CLDN18.2 RNA in circulating tumor cells in gastrointestinal cancer

Author(s):  
Xiaoyi Chong ◽  
Linyang Fan ◽  
Changsong Qi ◽  
Jifang Gong ◽  
Zhi Peng ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Chengcheng Qian ◽  
Renjie Cai ◽  
Wenying Zhang ◽  
Jiongyi Wang ◽  
Xiaohua Hu ◽  
...  

PurposeThe purpose of this study is to explore the prognostic value of associating pre-treatment neutrophil–lymphocyte ratio (NLR) with circulating tumor cells counts (CTCs) in patients with gastrointestinal cancer.Materials and MethodsWe collected the related data of 72 patients with gastric cancer (GC) and colorectal cancer (CRC) who received different therapies from August 2016 to October 2020, including age, gender, primary tumor location, TNM stage, tumor-differentiation, NLR, CTCs, disease-free survival (DFS) and overall survival (OS). We chose the optimal cut-off value of NLR >3.21 or NLR ≤3.21 and CTC >1 or CTC ≤1 by obtaining receiver operating characteristic (ROC) curve. The Kaplan–Meier survival analysis and Cox regression analysis were used to analyze DFS and OS. To clarify the role of the combination of NLR and CTCs counts in predicting the prognosis, we analyzed the DFS and OS when associated NLR and CTCs counts.ResultsA high NLR (>3.21) was associated with shorter DFS (P <0.0001) and OS (P <0.0001). Patients with high CTCs level (>1) had shorter DFS (P = 0.001) and OS (P = 0.0007) than patients with low CTCs level. Furthermore, patients who had both higher NLR and higher CTCs counts had obvious shorter DFS (P <0.0001) and OS (P <0.0001).ConclusionsPatients with higher NLR and more CTCs respectively tended to have poor prognosis with shorter DFS and OS, which might be regarded as predictors of gastrointestinal cancer. In particular, associating NLR and CTCs counts might be a reliable predictor in patients with gastrointestinal cancer.


2010 ◽  
Vol 19 (6) ◽  
pp. 1432-1440 ◽  
Author(s):  
Manuel Valladares-Ayerbes ◽  
Silvia Díaz-Prado ◽  
Margarita Reboredo ◽  
Vanessa Medina ◽  
Maria J. Lorenzo-Patiño ◽  
...  

2018 ◽  
Vol 64 (3) ◽  
pp. 536-546 ◽  
Author(s):  
Amin El-Heliebi ◽  
Claudia Hille ◽  
Navya Laxman ◽  
Jessica Svedlund ◽  
Christoph Haudum ◽  
...  

Abstract BACKGROUND Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. METHODS We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. RESULTS In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1–76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. CONCLUSIONS Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 3168-3178 ◽  
Author(s):  
Ren Li ◽  
Fei Jia ◽  
Weikai Zhang ◽  
Fanghao Shi ◽  
Zhiguo Fang ◽  
...  

To sequence single circulating tumor cells (CTCs) from whole blood, a microfluidic chip was developed to perform blood filtering/CTC enrichment/CTC sorting and in situ MDA for whole genome sequencing.


Sign in / Sign up

Export Citation Format

Share Document