scholarly journals Blockade or deletion of IFNg reduces macrophage activation without compromising CAR-T function in hematologic malignancies

2021 ◽  
pp. bloodcandisc.BCD-21-0181-E.2021
Author(s):  
Stefanie R Bailey ◽  
Sonika Vatsa ◽  
Rebecca C Larson ◽  
Amanda A Bouffard ◽  
Irene Scarfo ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1723-1723
Author(s):  
Stefanie R. Bailey ◽  
Sonika Vatsa ◽  
Rebecca Larson ◽  
Amanda A Bouffard ◽  
Irene Scarfò ◽  
...  

Abstract Background: Chimeric antigen receptor T cells (CAR-T) induce impressive responses in patients with hematologic malignancies but can also mediate a systemic inflammatory toxicity known as cytokine release syndrome (CRS), marked by elevated levels of pro-inflammatory cytokines and chemokines released from activated CAR-T and innate immune cells. Release of the pro-inflammatory cytokine interferon-gamma (IFNγ) in response to antigen is used as a potency assay for CAR-T cells, but elevated levels have been identified in patients suffering from CAR-T-associated toxicities such as CRS and neurotoxicity. Mutations in IFNγ receptor signaling have been identified as a mechanism of resistance in checkpoint blockade in melanoma and other solid tumors, and we have recently identified that IFNγ receptor signaling also confers resistance to CAR-T cell mediated cytotoxicity in solid tumors, but its biologic role in conferring responses in hematologic malignancies is not established. Methods: CD19-targeted CAR-T were generated using either 4-1BB or CD28 costimulatory domains. CAR-T effector functions in vitro and in vivo were assessed in the presence of absence of IFNγ-blocking antibody. Furthermore, we used CRISPR/Cas9 editing to knock out IFNγ in CD19-directed CAR-T cells. The effects of IFNγ inhibition in CAR-T by pharmacologic and genetic approaches on T cell function, immune checkpoint inhibitor expression, cancer cell lysis and macrophage activation/phenotype were assessed using ELISA, flow cytometry, in vitro/in vivo tumor models and Luminex/fluorescence microscopy/NanoString, respectively. Finally, serum from B cell lymphoma patients treated with the CAR-T products tisagenlecleucel or axicabtagene ciloleucel was collected 3 days post-CAR infusion and added to human macrophages in vitro in the presence of blocking antibodies to IFNγ versus the current clinical agents for managing CRS, including those targeting IL-1Rα and IL-6R. Macrophage phenotype and function was determined using NanoString, ELISA, and immunofluorescence microscopy. Results: We found that pharmacologic blockade or genetic knockout of IFNγ specifically reduces IFNγ signaling without compromising T cell phenotype or effector function, including production of GM-CSF, IL-2, Granzyme B and TNFα. We also observed reduced expression of the immune checkpoint proteins CTLA-4, PD-1, Lag3 and Tim3, which correlated with enhanced antigen-specific CAR-T proliferation. Cytotoxicity assays and NSG xenograft tumor-bearing mouse models revealed that blocking IFNγ has no effect on therapeutic efficacy of CAR T cells against CD19 + leukemias or lymphomas in vitro or in vivo. Furthermore, pharmacologic blockade or genetic knockout of IFNγ in CD19-directed CAR T cells abrogated macrophage activation in vitro and in hybrid in vitro/in vivo models of CRS, as shown by a reduction of activation markers (CD69, CD86) and pro-inflammatory proteins (IL-6, IP-10, MIP-1β and MCP-1). Further interrogation revealed that these findings were IFNγ-dependent but cell contact-independent. Finally, data herein reveals that blocking IFNγ in both healthy donor CAR-T cultures and lymphoma patient serum results in reduced macrophage activation/function to a similar, if not superior, extent as current clinical approaches targeting IL-1Rα and IL-6R. In addition to reduced macrophage function, NanoString analysis revealed a decreased expression of immune checkpoint inhibitor genes HAVCR2, VSIR and PDCD1LG2 and upregulation of co-stimulatory genes DPP4 and ICOSL. Conclusions: Collectively, these data show that IFNγ is dispensable for the efficacy of CAR-T against hematologic malignancies and blocking IFNγ could simultaneously mitigate cytokine-related toxicities while enhancing T cell proliferation and persistence via reduced expression of immune checkpoint proteins. Furthermore, direct comparison of IFNγ blockade or knockout in the CAR T cell product with current clinical strategies suggests that targeting IFNγ could mitigate major cytokine-related toxicities to a greater extent than existing approaches. Disclosures Frigault: Arcellx: Consultancy; Novartis: Consultancy, Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy; Iovance: Consultancy; Takeda: Consultancy; Editas: Consultancy. Maus: WindMIL: Consultancy; Torque: Consultancy, Current holder of stock options in a privately-held company; Tmunity: Consultancy; Novartis: Consultancy; Micromedicine: Consultancy, Current holder of stock options in a privately-held company; Kite Pharma: Consultancy, Research Funding; GSK: Consultancy; Intellia: Consultancy; In8bio (SAB): Consultancy; CRISPR therapeutics: Consultancy; Cabaletta Bio (SAB): Consultancy; BMS: Consultancy; Bayer: Consultancy; Atara: Consultancy; AstraZeneca: Consultancy; Astellas: Consultancy; Arcellx: Consultancy; Agenus: Consultancy; Adaptimmune: Consultancy; tcr2: Consultancy, Divested equity in a private or publicly-traded company in the past 24 months; century: Current equity holder in publicly-traded company; ichnos biosciences: Consultancy, Current holder of stock options in a privately-held company.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julien Edeline ◽  
Roch Houot ◽  
Aurélien Marabelle ◽  
Marion Alcantara

AbstractChimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1955
Author(s):  
Feifei Guo ◽  
Jiuwei Cui

Despite remarkable achievements in the treatment of hematologic malignancies, chimeric antigen receptor (CAR)-T cell therapy still faces many obstacles. The limited antitumor activity and persistence of infused CAR-T cells, especially in solid tumors, are the main limiting factors for CAR-T therapy. Moreover, clinical security and accessibility are important unmet needs for the application of CAR-T therapy. In view of these challenges, many potentially effective solutions have been proposed and confirmed. Both the independent and combined strategies of CAR-T therapy have exhibited good application prospects. Thus, in this review, we have discussed the cutting-edge breakthroughs in CAR-T therapy for cancer treatment, with the aim of providing a reference for addressing the current challenges.


2020 ◽  
pp. OP.20.00312
Author(s):  
Benjamin A. Derman ◽  
Zachary Schlei ◽  
Sandeep Parsad ◽  
Kathleen Mullane ◽  
Randall W. Knoebel

PURPOSE: Intravenous immunoglobulin (IVIG) is used to replenish immunoglobulins in hypogammaglobulinemia (HG) caused by hematologic malignancies (HM) or their treatment (autologous stem-cell transplantation [ASCT] and chimeric antigen receptor T-cell therapy [CAR-T]), in an effort to reduce the risk of infections. However, there is limited evidence to support this use, and IVIG supplies are limited and shortages are common. METHODS: An IVIG stewardship program (ISP) was implemented with the following requirements for IVIG administration: immunoglobulin G (IgG) level < 400 mg/dL (corrected for paraprotein) for post-ASCT and post–CAR-T patients, or IgG < 400 mg/dL with a history of a bacterial infection within the preceding 3 months for those with HM. Comparisons of the amount of IVIG administered, the incidence of infections, and the use of antimicrobials were performed between the 3 months before ISP and the 3 months after ISP. RESULTS: IVIG administered for HG decreased from 4,902 g in 86 patients before ISP to 1,777 g in 55 patients after ISP, a cost savings of $44,700. Adherence to ISP guidelines was 80%. Compared with before ISP, patients who stopped receiving IVIG after ISP had lower nadir IgG, fewer infections/patient-months, less antimicrobial usage, and a lower hospitalization rate for infection; no deaths occurred. Compared with before ISP, patients receiving IVIG after ISP had lower predose IgG and fewer infections/patient-months; the antibiotic usage, hospitalization rate for infection, and deaths from infection remained stable. CONCLUSION: To our knowledge, this is the first ISP to lead to a dramatic decrease in IVIG usage with high adherence, primarily by selecting out patients at low risk of infection after IVIG discontinuation. Such an ISP is replicable and warrants adoption.


2020 ◽  
Vol 10 ◽  
Author(s):  
Scott R. Goldsmith ◽  
Armin Ghobadi ◽  
John F. DiPersio

Allogeneic hematopoietic cell transplantation (allo-HCT) and chimeric antigen receptor T cell (CAR T) therapy are the main modalities of adoptive cellular immunotherapy that have widely permeated the clinical space. The advent of both technologies revolutionized treatment of many hematologic malignancies, both offering the chance at sustained remissions for patients who would otherwise invariably succumb to their diseases. The understanding and exploitation of the nonspecific alloreactivity of allo-HCT and the graft-versus-tumor effect is contrasted by the genetically engineered precision of CAR T therapy. Historically, those with relapsed and refractory hematologic malignancies have often been considered for allo-HCT, although outcomes vary dramatically and are associated with potential acute and chronic toxicities. Such patients, mainly with B-lymphoid malignancies, may now be offered CAR T therapy. Yet, a lack of prospective data to guide decisions thereafter requires individualized approaches on whether to proceed to allo-HCT or observe. The continued innovations to make CAR T therapy more effective and accessible will continue to alter such approaches, but similar innovations in allo-HCT will likely result in similarly improved clinical outcomes. In this review, we describe the history of the two platforms, dissect the clinical indications emphasizing their intertwining and competitive roles described in trials and practice guidelines, and highlight innovations in which they complement or inform one another.


Sign in / Sign up

Export Citation Format

Share Document